Abstract

Natural fiber-reinforced plastic (NFRP) composites are ecofriendly and biodegradable materials that offer tremendous ecological advantages while preserving unique structures and properties. Studies on using these natural fibers as alternatives to conventional synthetic fibers in fiber-reinforced materials have opened up possibilities for industrial applications, especially for sustainable manufacturing. However, critical issues reside in the machinability of such materials because of their multiscale structure and the randomness of the reinforcing elements distributed within the matrix basis. This paper reports a comprehensive investigation of the effect of microstructure heterogeneity on the resultant behaviors of cutting forces for NFRP machining. A convolutional neural network (CNN) links the microstructural reinforcing fibers and their impacts on changing the cutting forces (with an estimated R-squared value over 90%). Next, a model-agnostic explainable machine learning approach is implemented to decipher this CNN black-box model by discovering the underlying mechanisms of relating the reinforcing elements/fibers’ microstructures. The presented xml approach extracts physical descriptors from the in-process monitoring microscopic images and finds the causality of the fibrous structures’ heterogeneity to the resultant machining forces. The results suggest that, for the heterogeneous fibers, the tightly and evenly bounded fiber elements (i.e., with lower aspect ratio, lower eccentricity, and higher compactness) strengthen the material and thereafter play a significant role in increasing the cutting forces during NFRP machining. Therefore, the presented framework of the explainable machine learning approach opens an opportunity to discover the causality of material microstructures on the resultant process dynamics and accurately predict the cutting behaviors during material removal processes.

References

1.
Li
,
M.
,
Pu
,
Y.
,
Thomas
,
V. M.
,
Yoo
,
C. G.
,
Ozcan
,
S.
,
Deng
,
Y.
,
Nelson
,
K.
, and
Ragauskas
,
A. J.
,
2020
, “
Recent Advancements of Plant-Based Natural Fiber–Reinforced Composites and Their Applications
,”
Compos. B: Eng.
,
200
, p.
108254
.
2.
Giancaspro
,
J. W.
,
Papakonstantinou
,
C. G.
, and
Balaguru
,
P. N.
,
2010
, “
Flexural Response of Inorganic Hybrid Composites With E-Glass and Carbon Fibers
,”
ASME J. Eng. Mater. Technol.
,
132
(
2
), p.
021005
.
3.
Frank
,
E.
,
Hermanutz
,
F.
, and
Buchmeiser
,
M. R.
,
2012
, “
Carbon Fibers: Precursors, Manufacturing, and Properties
,”
Macromol. Mater. Eng.
,
297
(
6
), pp.
493
501
.
4.
Zajac
,
J.
,
Hutyrová
,
Z.
, and
Orlovský
,
I.
,
2014
, “
Investigation of Surface Roughness After Turning of One Kind of the Bio-Material With Thermoplastic Matrix and Natural Fibers
,”
Adv. Mater. Res.
,
941–944
, pp.
275
279
.
5.
Fu
,
S.
, and
Lauke
,
B.
,
1996
, “
Effects of Fiber Length and Fiber Orientation Distributions on the Tensile Strength of Short-Fiber-Reinforced Polymers
,”
Compos. Sci. Technol.
,
56
(
10
), pp.
1179
1190
.
6.
Wang
,
Z.
,
Chegdani
,
F.
,
Yalamarti
,
N.
,
Takabi
,
B.
,
Tai
,
B.
,
El Mansori
,
M.
, and
Bukkapatnam
,
S.
,
2020
, “
Acoustic Emission Characterization of Natural Fiber Reinforced Plastic Composite Machining Using a Random Forest Machine Learning Model
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
031003
.
7.
Saba
,
N.
,
Jawaid
,
M.
,
Alothman
,
O. Y.
, and
Paridah
,
M. T.
,
2016
, “
A Review on Dynamic Mechanical Properties of Natural Fibre Reinforced Polymer Composites
,”
Constr. Build. Mater.
,
106
, pp.
149
159
.
8.
Yue
,
X.
,
Yang
,
X.
,
Tian
,
J.
,
He
,
Z.
, and
Fan
,
Y.
,
2018
, “
Thermal, Mechanical and Chemical Material Removal Mechanism of Carbon Fiber Reinforced Polymers in Electrical Discharge Machining
,”
Int. J. Mach. Tools Manuf.
,
133
, pp.
4
17
.
9.
Jariwala
,
H.
, and
Jain
,
P.
,
2019
, “
A Review on Mechanical Behavior of Natural Fiber Reinforced Polymer Composites and Its Applications
,”
J. Reinf. Plast. Compos.
,
38
(
10
), pp.
441
453
.
10.
Alsubari
,
S.
,
Zuhri
,
M. Y. M.
,
Sapuan
,
S. M.
,
Ishak
,
M. R.
,
Ilyas
,
R. A.
, and
Asyraf
,
M. R. M.
,
2021
, “
Potential of Natural Fiber Reinforced Polymer Composites in Sandwich Structures: A Review on Its Mechanical Properties
,”
Polymers
,
13
(
3
), p.
423
.
11.
Venkateshwaran
,
N.
, and
ElayaPerumal
,
A.
,
2013
, “
Hole Quality Evaluation of Natural Fiber Composite Using Image Analysis Technique
,”
J. Reinf. Plast. Compos.
,
32
(
16
), pp.
1188
1197
.
12.
Nassar
,
M. M. A.
,
Arunachalam
,
R.
, and
Alzebdeh
,
K. I.
,
2017
, “
Machinability of Natural Fiber Reinforced Composites: A Review
,”
Int. J. Adv. Manuf. Technol.
,
88
(
9
), pp.
2985
3004
.
13.
Debnath
,
K.
,
Singh
,
I.
, and
Dvivedi
,
A.
,
2014
, “
Drilling Characteristics of Sisal Fiber-Reinforced Epoxy and Polypropylene Composites
,”
Mater. Manuf. Process.
,
29
(
11–12
), pp.
1401
1409
.
14.
Babu
,
J.
,
Sunny
,
T.
,
Paul
,
N. A.
,
Mohan
,
K. P.
,
Philip
,
J.
, and
Davim
,
J. P.
,
2016
, “
Assessment of Delamination in Composite Materials: A Review
,”
Proc. Inst. Mech. Eng. B: J. Eng. Manuf.
,
230
(
11
), pp.
1990
2003
.
15.
De Oliveira
,
F. B.
,
Rodrigues
,
A. R.
,
Coelho
,
R. T.
, and
De Souza
,
A. F.
,
2015
, “
Size Effect and Minimum Chip Thickness in Micromilling
,”
Int. J. Mach. Tools Manuf.
,
89
, pp.
39
54
.
16.
Maegawa
,
S.
,
Morikawa
,
Y.
,
Hayakawa
,
S.
,
Itoigawa
,
F.
, and
Nakamura
,
T.
,
2016
, “
Mechanism for Changes in Cutting Forces for Down-Milling of Unidirectional Carbon Fiber Reinforced Polymer Laminates: Modeling and Experimentation
,”
Int. J. Mach. Tools Manuf.
,
100
, pp.
7
13
.
17.
Geier
,
N.
,
Davim
,
J. P.
, and
Szalay
,
T.
,
2019
, “
Advanced Cutting Tools and Technologies for Drilling Carbon Fibre Reinforced Polymer (CFRP) Composites: A Review
,”
Compos. A: Appl. Sci. Manuf.
,
125
, p.
105552
.
18.
Shankar
,
S.
,
Mohanraj
,
T.
, and
Rajasekar
,
R.
,
2019
, “
Prediction of Cutting Tool Wear During Milling Process Using Artificial Intelligence Techniques
,”
Int. J. Comput. Integr. Manuf.
,
32
(
2
), pp.
174
182
.
19.
Pradeep
,
S.
, and
Rajasekaran
,
T.
,
2020
, “Cutting Force Analysis on Drilling of Natural Fiber Reinforced Polymer Composites Material,”
Techno-Societal 2018
,
P. M.
Pawar
,
B. P.
Ronge
,
R.
Balasubramaniam
,
A. S.
Vibhute
, and
S. S.
Apte
, eds.,
Springer International Publishing
,
Cham
, pp.
561
571
.
20.
Balaji
,
N. S.
,
Jayabal
,
S.
,
Kalyana Sundaram
,
S.
,
Rajamuneeswaran
,
S.
, and
Suresh
,
P.
,
2014
, “
Delamination Analysis in Drilling of Coir-Polyester Composites Using Design of Experiments
,”
Adv. Mater. Res.
,
984–985
, pp.
185
193
.
21.
Jayabal
,
S.
,
Natarajan
,
U.
, and
Sekar
,
U.
,
2011
, “
Regression Modeling and Optimization of Machinability Behavior of Glass-Coir-Polyester Hybrid Composite Using Factorial Design Methodology
,”
Int. J. Adv. Manuf. Technol.
,
55
(
1
), pp.
263
273
.
22.
Chegdani
,
F.
,
Wang
,
Z.
,
El Mansori
,
M.
, and
Bukkapatnam
,
S. T. S.
,
2018
, “
Multiscale Tribo-Mechanical Analysis of Natural Fiber Composites for Manufacturing Applications
,”
Tribol. Int.
,
122
, pp.
143
150
.
23.
Chegdani
,
F.
,
El Mansori
,
M.
, and
Chebbi
,
A. A.
,
2021
, “
Cutting Behavior of Flax Fibers as Reinforcement of Biocomposite Structures Involving Multiscale Hygrometric Shear
,”
Compos. B: Eng.
,
211
, p.
108660
.
24.
Wang
,
Z.
,
Guo
,
R.
,
Ma
,
Q.
,
Chegdani
,
F.
,
Tai
,
B.
,
El Mansori
,
M.
, and
Bukkapatnam
,
S. T. S.
,
2021
, “
Characterization of the Physical Origins of Acoustic Emission (AE) From Natural Fiber Reinforced Polymers (NFRPs) Machining Processes
,”
Int. J. Adv. Manuf. Technol.
,
118
(
3–4)
, pp.
865
879
25.
Zhang
,
Z.
,
Cai
,
S.
,
Li
,
Y.
,
Wang
,
Z.
,
Long
,
Y.
,
Yu
,
T.
, and
Shen
,
Y.
,
2020
, “
High Performances of Plant Fiber Reinforced Composites—A New Insight From Hierarchical Microstructures
,”
Compos. Sci. Technol.
,
194
, p.
108151
.
26.
Khieng
,
T. K.
,
Debnath
,
S.
,
Ting Chaw Liang
,
E.
,
Anwar
,
M.
,
Pramanik
,
A.
, and
Basak
,
A. K.
,
2021
, “
A Review on Mechanical Properties of Natural Fibre Reinforced Polymer Composites Under Various Strain Rates
,”
J. Compos. Sci.
,
5
(
5
), p.
130
.
27.
Hohe
,
J.
,
Neubrand
,
A.
,
Fliegener
,
S.
,
Beckmann
,
C.
,
Schober
,
M.
,
Weiss
,
K. P.
, and
Appel
,
S.
,
2021
, “
Performance of Fiber Reinforced Materials Under Cryogenic Conditions—A Review
,”
Compos. A: Appl. Sci. Manuf.
,
141
, p.
106226
.
28.
Modniks
,
J.
, and
Andersons
,
J.
,
2013
, “
Modeling the Non-Linear Deformation of a Short-Flax-Fiber-Reinforced Polymer Composite by Orientation Averaging
,”
Compos. B: Eng.
,
54
, pp.
188
193
.
29.
Sliseris
,
J.
,
Yan
,
L.
, and
Kasal
,
B.
,
2016
, “
Numerical Modelling of Flax Short Fibre Reinforced and Flax Fibre Fabric Reinforced Polymer Composites
,”
Compos. B: Eng.
,
89
, pp.
143
154
.
30.
Brighenti
,
R.
,
Carpinteri
,
A.
, and
Scorza
,
D.
,
2016
, “
Mechanics of Interface Debonding in Fibre-Reinforced Materials
,”
J. Compos. Mater.
,
50
(
19
), pp.
2699
2718
.
31.
Gupta
,
A.
,
Hasanov
,
S.
,
Fidan
,
I.
, and
Zhang
,
Z.
,
2021
, “
Homogenized Modeling Approach for Effective Property Prediction of 3D-Printed Short Fibers Reinforced Polymer Matrix Composite Material
,”
Int. J. Adv. Manuf. Technol.
,
118
(
11–12),
pp.
4161
4178
.
32.
Wojciechowski
,
S.
,
Matuszak
,
M.
,
Powałka
,
B.
,
Madajewski
,
M.
,
Maruda
,
R. W.
, and
Królczyk
,
G. M.
,
2019
, “
Prediction of Cutting Forces During Micro End Milling Considering Chip Thickness Accumulation
,”
Int. J. Mach. Tools Manuf.
,
147
, p.
103466
.
33.
Garcia Luna
,
G.
,
Axinte
,
D.
, and
Novovic
,
D.
,
2020
, “
Influence of Grit Geometry and Fibre Orientation on the Abrasive Material Removal Mechanisms of SiC/SiC Ceramic Matrix Composites (CMCs)
,”
Int. J. Mach. Tools Manuf.
,
157
, p.
103580
.
34.
Chen
,
R.
,
Li
,
S.
,
Li
,
P.
,
Liu
,
X.
,
Qiu
,
X.
,
Tae
,
J. K.
, and
Jiang
,
Y.
,
2020
, “
Effect of Fiber Orientation Angles on the Material Removal Behavior of CFRP During Cutting Process by Multi-Scale Characterization
,”
Int. J. Adv. Manuf. Technol.
,
106
(
11–12
), pp.
5017
5031
.
35.
Lotfi
,
A.
,
Li
,
H.
,
Dao
,
D. V.
, and
Prusty
,
G.
,
2021
, “
Natural Fiber–Reinforced Composites: A Review on Material, Manufacturing, and Machinability
,”
J. Thermoplast. Compos. Mater.
,
34
, pp.
238
284
.
36.
Kazi
,
M.-K.
,
Eljack
,
F.
, and
Mahdi
,
E.
,
2021
, “
Data-Driven Modeling to Predict the Load vs. Displacement Curves of Targeted Composite Materials for Industry 4.0 and Smart Manufacturing
,”
Compos. Struct.
,
258
, p.
113207
.
37.
Tibaduiza Burgos
,
D. A.
,
Gomez Vargas
,
R. C.
,
Pedraza
,
C.
,
Agis
,
D.
, and
Pozo
,
F.
,
2020
, “
Damage Identification in Structural Health Monitoring: A Brief Review From Its Implementation to the Use of Data-Driven Applications
,”
Sensors
,
20
(
3
), p.
733
.
38.
Wang
,
Z.
,
Dixit
,
P.
,
Chegdani
,
F.
,
Takabi
,
B.
,
Tai
,
B. L.
,
El Mansori
,
M.
, and
Bukkapatnam
,
S.
,
2020
, “
Bidirectional Gated Recurrent Deep Learning Neural Networks for Smart Acoustic Emission Sensing of Natural Fiber–Reinforced Polymer Composite Machining Process
,”
Smart Sustain. Manuf. Syst.
,
4
(
2
), pp.
179
198
.
39.
Rahman
,
J.
,
Ahmed
,
K. S.
,
Khan
,
N. I.
,
Islam
,
K.
, and
Mangalathu
,
S.
,
2021
, “
Data-Driven Shear Strength Prediction of Steel Fiber Reinforced Concrete Beams Using Machine Learning Approach
,”
Eng. Struct.
,
233
, p.
111743
.
40.
Zhou
,
K.
,
Sun
,
H.
,
Enos
,
R.
,
Zhang
,
D.
, and
Tang
,
J.
,
2021
, “
Harnessing Deep Learning for Physics-Informed Prediction of Composite Strength With Microstructural Uncertainties
,”
Comput. Mater. Sci.
,
197
, p.
110663
.
41.
Gerritzen
,
J.
,
Hornig
,
A.
,
Gröger
,
B.
, and
Gude
,
M.
,
2022
, “
A Data Driven Modelling Approach for the Strain Rate Dependent 3D Shear Deformation and Failure of Thermoplastic Fibre Reinforced Composites: Experimental Characterisation and Deriving Modelling Parameters
,”
J. Compos. Sci.
,
6
(
10
), p.
318
.
42.
Ibrahim
,
M.
,
Louie
,
M.
,
Modarres
,
C.
, and
Paisley
,
J.
,
2019
, “
Global Explanations of Neural Networks: Mapping the Landscape of Predictions
,”
Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society
,
Honolulu, HI
,
Jan. 27–28
, pp.
279
287
.
43.
Sangroya
,
A.
,
Rastogi
,
M.
,
Anantaram
,
C.
, and
Vig
,
L.
,
2020
, “
Guided-LIME: Structured Sampling Based Hybrid Approach Towards Explaining Blackbox Machine Learning Models
,”
CIKM (Workshops)
,
Galway, Ireland
,
Oct. 19–23
.
44.
Iquebal
,
A. S.
,
Pandagare
,
S.
, and
Bukkapatnam
,
S.
,
2020
, “
Learning Acoustic Emission Signatures From a Nanoindentation-Based Lithography Process: Towards Rapid Microstructure Characterization
,”
Tribol. Int.
,
143
, p.
106074
.
45.
Zhong
,
Y.
,
Tiwari
,
A.
,
Yamaguchi
,
H.
,
Lakhtakia
,
A.
, and
Bukkapatnam
,
S. T.
,
2023
, “
Identifying the Influence of Surface Texture Waveforms on Colors of Polished Surfaces Using an Explainable AI Approach
,”
IISE Trans.
,
55
(
7
), pp.
731
745
.
46.
Vigneshwaran
,
S.
,
Sundarakannan
,
R.
,
John
,
K. M.
,
Johnson
,
R. D. J.
,
Prasath
,
K. A.
,
Ajith
,
S.
,
Arumugaprabu
,
V.
, and
Uthayakumar
,
M.
,
2020
, “
Recent Advancement in the Natural Fiber Polymer Composites: A Comprehensive Review
,”
J. Cleaner Prod.
,
277
, p.
124109
.
47.
Chegdani
,
F.
,
El Mansori
,
M.
,
Bukkapatnam
,
T. S. S.
, and
Reddy
,
J. N.
,
2019
, “
Micromechanical Modeling of the Machining Behavior of Natural Fiber-Reinforced Polymer Composites
,”
Int. J. Adv. Manuf. Technol.
,
105
(
1–4
), pp.
1549
1561
.
48.
Zhong
,
L.
,
Li
,
L.
,
Wu
,
X.
, and
He
,
N.
,
2017
, “
Micro Cutting of Pure Tungsten Using Self-Developed Polycrystalline Diamond Slotting Tools
,”
Int. J. Adv. Manuf. Technol.
,
89
(
5–8
), pp.
2435
2445
.
49.
Biró
,
I.
, and
Szalay
,
T.
,
2017
, “
Extension of Empirical Specific Cutting Force Model for the Process of Fine Chip-Removing Milling
,”
Int. J. Adv. Manuf. Technol.
,
88
(
9–12
), pp.
2735
2743
.
50.
Chegdani
,
F.
,
Mezghani
,
S.
, and
El Mansori
,
M.
,
2015
, “
Experimental Study of Coated Tools Effects in Dry Cutting of Natural Fiber Reinforced Plastics
,”
Surf. Coat. Technol.
,
284
, pp.
264
272
.
51.
Su
,
S.
,
Zhao
,
G.
,
Xiao
,
W.
,
Yang
,
Y.
, and
Cao
,
X.
,
2021
, “
An Image-Based Approach to Predict Instantaneous Cutting Forces Using Convolutional Neural Networks in End Milling Operation
,”
Int. J. Adv. Manuf. Technol.
,
115
(
5–6
), pp.
1657
1669
.
52.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,”
arXiv preprint arXiv:1412.6980
, pp.
273
297
. https://arxiv.org/abs/1412.6980
53.
Vedaldi
,
A.
, and
Soatto
,
S.
,
2008
, “
Quick Shift and Kernel Methods for Mode Seeking
,”
European Conference on Computer Vision
,
Marseille, France
,
Oct. 12–18
, Springer, pp.
705
718
.
54.
Guo
,
W.
,
Mu
,
D.
,
Xu
,
J.
,
Su
,
P.
,
Wang
,
G.
, and
Xing
,
X.
,
2018
, “
Lemna: Explaining Deep Learning Based Security Applications
,”
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security
,
Toronto, ON, Canada
,
Oct. 15–19
, pp.
364
379
.
55.
Slack
,
D.
,
Hilgard
,
A.
,
Singh
,
S.
, and
Lakkaraju
,
H.
,
2021
, “
Reliable Post Hoc Explanations: Modeling Uncertainty in Explainability
,”
Adv. Neural Inf. Process. Syst.
,
34
, pp.
9391
9404
.
56.
Wattanakriengkrai
,
S.
,
Thongtanunam
,
P.
,
Tantithamthavorn
,
C.
,
Hata
,
H.
, and
Matsumoto
,
K.
,
2020
, “
Predicting Defective Lines Using a Model-Agnostic Technique
,”
IEEE Trans. Softw. Eng.
,
48
(
5
), pp.
1480
1496
.
57.
Zadrozny
,
B.
, and
Elkan
,
C.
,
2002
, “
Transforming Classifier Scores Into Accurate Multiclass Probability Estimates
,”
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
Edmonton, Alberta, Canada
,
July 23–26
, pp.
694
699
.
58.
Ribeiro
,
M. T.
,
Singh
,
S.
, and
Guestrin
,
C.
,
2016
, “
Why Should I Trust You?" Explaining the Predictions of Any Classifier
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
New York
,
Aug. 13
.
59.
Jaeger
,
B. C.
,
Edwards
,
L. J.
, and
Gurka
,
M. J.
,
2019
, “
An R2 Statistic for Covariance Model Selection in the Linear Mixed Model
,”
J. Appl. Stat.
,
46
(
1
), pp.
164
184
.
60.
Henseler
,
J.
,
Ringle
,
C. M.
, and
Sinkovics
,
R. R.
,
2009
, “The Use of Partial Least Squares Path Modeling in International Marketing,”
Advances in International Marketing
,
R. R.
Sinkovics
, and
P. N.
Ghauri
, eds.,
Emerald Group Publishing Limited
,
Leeds, UK
, pp.
277
319
.
61.
Achanta
,
R.
,
Shaji
,
A.
,
Smith
,
K.
,
Lucchi
,
A.
,
Fua
,
P.
, and
Süsstrunk
,
S.
,
2012
, “
SLIC Superpixels Compared to State-of-the-Art Superpixel Methods
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
34
(
11
), pp.
2274
2282
.
62.
Gamarra
,
M.
,
Zurek
,
E.
,
Escalante
,
H. J.
,
Hurtado
,
L.
, and
San-Juan-Vergara
,
H.
,
2019
, “
Split and Merge Watershed: A Two-Step Method for Cell Segmentation in Fluorescence Microscopy Images
,”
Biomed. Signal Process. Control
,
53
, p.
101575
.
63.
Meng
,
Y.
,
Zhang
,
Z.
,
Yin
,
H.
, and
Ma
,
T.
,
2018
, “
Automatic Detection of Particle Size Distribution by Image Analysis Based on Local Adaptive Canny Edge Detection and Modified Circular Hough Transform
,”
Micron
,
106
, pp.
34
41
.
64.
Kim
,
H.
,
Han
,
J.
, and
Han
,
T. Y.-J.
,
2020
, “
Machine Vision-Driven Automatic Recognition of Particle Size and Morphology in SEM Images
,”
Nanoscale
,
12
(
37
), pp.
19461
19469
.
65.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst. Man Cybern.
,
9
(
1
), pp.
62
66
.
66.
Cann
,
M. T.
,
Adams
,
D. O.
, and
Schneider
,
C. L.
,
2008
, “
Characterization of Fiber Volume Fraction Gradients in Composite Laminates
,”
J. Compos. Mater.
,
42
(
5
), pp.
447
466
.
67.
Xu
,
H.
,
Li
,
Y.
,
Brinson
,
C.
, and
Chen
,
W.
,
2014
, “
A Descriptor-Based Design Methodology for Developing Heterogeneous Microstructural Materials System
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051007
.
68.
Xu
,
H.
, and
Chen
,
W.
,
2014
, “
A Machine Learning-Based Design Representation Method for Designing Heterogeneous Microstructures
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051403
.
69.
Bostanabad
,
R.
,
Zhang
,
Y.
,
Li
,
X.
,
Kearney
,
T.
,
Brinson
,
L. C.
,
Apley
,
D. W.
,
Liu
,
W. K.
, and
Chen
,
W.
,
2018
, “
Computational Microstructure Characterization and Reconstruction: Review of the State-of-the-Art Techniques
,”
Prog. Mater. Sci.
,
95
, pp.
1
41
.
70.
Ma
,
Q.
, and
Wang
,
Z.
,
2023
, “
Characterizing Heterogeneous Microstructures of Fiber-Reinforced Composite Materials Using an Advanced Image Processing-Based Approach Through Optical Microscopic Images
,”
Manuf. Lett.
,
35
, pp.
1163
1172
.
71.
Muir
,
C.
,
Swaminathan
,
B.
,
Fields
,
K.
,
Almansour
,
A. S.
,
Sevener
,
K.
,
Smith
,
C.
,
Presby
,
M.
,
Kiser
,
J. D.
,
Pollock
,
T. M.
, and
Daly
,
S.
,
2021
, “
A Machine Learning Framework for Damage Mechanism Identification From Acoustic Emissions in Unidirectional SiC/SiC Composites
,”
NPJ Comput. Mater.
,
7
(
1
), p.
146
.
72.
Munoz-Ibanez
,
A.
,
Delgado-Martín
,
J.
,
Herbón-Penabad
,
M.
, and
Alvarellos-Iglesias
,
J.
,
2021
, “
Acoustic Emission Monitoring of Mode I Fracture Toughness Tests on Sandstone Rocks
,”
J. Pet. Sci. Eng.
,
205
, p.
108906
.
You do not currently have access to this content.