Abstract

The effects of a hybrid process that combines ultrasonic cavitation and electrochemical polishing on the electrochemical behavior and the resulting surface characteristics of additively manufactured 316-L stainless steel were investigated. In situ potentiodynamic scans and electrochemical impedance spectroscopy (EIS) were conducted to gain a fundamental understanding of the effect of ultrasonic cavitation on the electrochemical processes involved, considering the influence of electrolyte temperature at 60 and 70 °C. The potentiodynamic scans revealed that increasing the ultrasonic excitation amplitude from 20 to 80 µm at 20 µm intervals and temperature from 60 to 70 °C led to reduced polishing resistance, and elevated passivation current density at equivalent applied potentials, thus leading to an increased polishing rate. These findings are attributed to intensified cavitation near the material surface, which promoted anodic dissolution reactions and accelerated the polishing rate. In situ EIS measurements provided valuable information on the charge transfer resistance and double-layer capacitance and their influence on the hybrid process. Specifically, higher ultrasonic amplitudes and elevated temperatures contributed to enhanced electrical double-layer formation and ion adsorption, resulting in a faster rate of polishing, indicating the efficacy of the hybrid process. These findings enhance our understanding of the complex interactions between ultrasonic cavitation and electrochemical dissolution processes that occur during ultrasonic cavitation-assisted electrochemical polishing. The research provides valuable insights for optimizing the process and its potential application in the post-processing of metal additive manufactured parts.

References

1.
Kim
,
U. S.
, and
Park
,
J. W.
,
2019a
, “
High-Quality Surface Finishing of Industrial Three-Dimensional Metal Additive Manufacturing Using Electrochemical Polishing
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
6
(
1
), pp.
11
21
.
2.
Wang
,
F.
,
Zhang
,
X.
, and
Deng
,
H.
,
2019
, “
A Comprehensive Study on Electrochemical Polishing of Tungsten
,”
Appl. Surf. Sci.
,
475
, pp.
587
597
.
3.
Wang
,
B.
,
Castellana
,
J.
, and
Melkote
,
S. N.
,
2021
, “
A Hybrid Post-Processing Method for Improving the Surface Quality of Additively Manufactured Metal Parts
,”
CIRP Ann.
,
70
(
1
), pp.
175
178
.
4.
Tong
,
W.
,
He
,
K.
,
Wang
,
X.
,
Xu
,
X.
, and
Wang
,
M.
,
2021
, “
Mechanism of 6061 Aluminum Material Erosion in USEMM
,”
Int. J. Adv. Manuf. Technol.
,
118
(
3–4
), pp.
895
906
.
5.
Skoczypiec
,
S.
,
2010
, “
Research on Ultrasonically Assisted Electrochemical Machining Process
,”
Int. J. Adv. Manuf. Technol.
,
52
(
5–8
), pp.
565
574
.
6.
Singh
,
H.
, and
Jain
,
P. K.
,
2016
, “
Study on Ultrasonic-Assisted Electrochemical Honing of Bevel Gears
,”
Proc. Inst. Mech. Eng. B
,
232
(
4
), pp.
705
712
.
7.
Ebrahimi
,
N.
,
Momeni
,
M.
,
Kosari
,
A.
,
Zakeri
,
M.
, and
Moayed
,
M. H.
,
2012
, “
A Comparative Study of Critical Pitting Temperature (CPT) of Stainless Steels by Electrochemical Impedance Spectroscopy (EIS), Potentiodynamic and Potentiostatic Techniques
,”
Corros. Sci.
,
59
, pp.
96
102
.
8.
Chang
,
J.-K.
,
Lee
,
C.-Y.
,
Tzeng
,
Y.-C.
,
Lin
,
M.-H.
,
Ger
,
M.-D.
,
Kao
,
C.-H.
,
Chen
,
C.-P.
,
Jen
,
K.-K.
, and
Jian
,
S.-Y.
,
2021
, “
Electropolishing of Additive Manufactured 17-4 ph Stainless Steel Using Sulfuric Acid
,”
Int. J. Electrochem. Sci.
,
16
(
3
), p.
21032
.
9.
Xu
,
W.
,
Wei
,
Z.
,
Sun
,
J.
,
Wei
,
L.
, and
Yu
,
Z.
,
2012
, “
Surface Quality Prediction and Processing Parameter Determination in Electrochemical Mechanical Polishing of Bearing Rollers
,”
Int. J. Adv. Manuf. Technol.
,
63
(
1–4
), pp.
129
136
.
10.
Han
,
W.
, and
Fang
,
F.
,
2020
, “
Two-Step Electropolishing of 316L Stainless Steel in a Sulfuric Acid-Free Electrolyte
,”
J. Mater. Process. Technol.
,
279
, p.
116558
.
11.
BenSalah
,
M.
,
Sabot
,
R.
,
Triki
,
E.
,
Dhouibi
,
L.
,
Refait
,
P.
, and
Jeannin
,
M.
,
2014
, “
Passivity of Sanicro28 (uns n-08028) Stainless Steel in Polluted Phosphoric Acid at Different Temperatures Studied by Electrochemical Impedance Spectroscopy and Mott–Schottky Analysis
,”
Corros. Sci.
,
86
, pp.
61
70
.
12.
Meddings
,
N.
,
Heinrich
,
M.
,
Overney
,
F.
,
Lee
,
J.-S.
,
Ruiz
,
V.
,
Napolitano
,
E.
,
Seitz
,
S.
, et al
,
2020
, “
Application of Electrochemical Impedance Spectroscopy to Commercial Li-Ion Cells: A Review
,”
J. Power Sources
,
480
, p.
228742
.
13.
Costa
,
J. M.
, and
Almeida Neto
,
A. F.
,
2020
, “
Ultrasound-Assisted Electrodeposition and Synthesis of Alloys and Composite Materials: A Review
,”
Ultrason. Sonochem.
,
68
, p.
105193
.
14.
Klima
,
J.
,
2011
, “
Application of Ultrasound in Electrochemistry. An Overview of Mechanisms and Design of Experimental Arrangement
,”
Ultrasonics
,
51
(
2
), pp.
202
209
.
15.
Mitchell-Smith
,
J.
, and
Clare
,
A. T.
,
2016
, “
Electrochemical Jet Machining of Titanium: Overcoming Passivation Layers With Ultrasonic Assistance
,”
Proc. CIRP
,
42
, pp.
379
383
.
16.
Browne
,
C.
,
Tabor
,
R. F.
,
Chan
,
D. Y.
,
Dagastine
,
R. R.
,
Ashokkumar
,
M.
, and
Grieser
,
F.
,
2011
, “
Bubble Coalescence During Acoustic Cavitation in Aqueous Electrolyte Solutions
,”
Langmuir
,
27
(
19
), pp.
12025
12032
.
17.
Zhao
,
H.
,
Humbeeck
,
J. V.
,
Sohier
,
J.
, and
Scheerder
,
I. D.
,
2002
, “
Electrochemical Polishing of 316 L Stainless Steel Slotted Tube Coronary Stents
,”
J. Mater. Sci. Mater. Med.
,
13
(
10
), pp.
911
916
.
18.
Liu
,
M.
,
Cheng
,
X.
,
Zhao
,
G.
,
Li
,
X.
, and
Pan
,
Y.
,
2016
, “
Corrosion Resistances of Passive Films on low-CR Steel and Carbon Steel in Simulated Concrete Pore Solution
,”
Surf. Interface Anal.
,
48
(
9
), pp.
981
989
.
19.
Brotchie
,
A.
,
Grieser
,
F.
, and
Ashokkumar
,
M.
,
2009
, “
Effect of Power and Frequency on Bubble-Size Distributions in Acoustic Cavitation’
,”
Phys. Rev. Lett.
,
102
(
8
), p.
084302
.
20.
Tappertzhofen
,
S.
,
Mündelein
,
H.
,
Valov
,
I.
, and
Waser
,
R.
,
2012
, “
Nanoionic Transport and Electrochemical Reactions in Resistively Switching Silicon Dioxide
,”
Nanoscale
,
4
(
10
), p.
3040
.
21.
Carranza
,
R. M.
, and
Alvarez
,
M. G.
,
1996a
, “
The Effect of Temperature on the Passive Film Properties and Pitting Behaviour of a fe CR ni Alloy
,”
Corros. Sci.
,
38
(
6
), pp.
909
925
.
22.
Hong
,
S.
,
Wu
,
Y.
,
Zhang
,
J.
,
Zheng
,
Y.
,
Qin
,
Y.
, and
Lin
,
J.
,
2015
, “
Effect of Ultrasonic Cavitation Erosion on Corrosion Behavior of High-Velocity Oxygen-Fuel (HVOF) Sprayed Near-Nanostructured WC–10Co–4CR Coating
,”
Ultrason. Sonochem.
,
27
, pp.
374
378
.
23.
Bradley
,
C.
, and
Samuel
,
J.
,
2018
, “
Controlled Phase Interactions Between Pulsed Electric Fields, Ultrasonic Motion, and Magnetic Fields in an Anodic Dissolution Cell
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041010
.
24.
Lavigne
,
O.
,
Takeda
,
Y.
,
Shoji
,
T.
, and
Sakaguchi
,
K.
,
2011
, “
Generation of Hydroxyl Radicals by Sonochemistry: Effects on the Electrochemical Behaviour of a 316L Stainless Steel
,”
Corros. Sci.
,
53
(
3
), pp.
1079
1085
.
25.
Holm
,
S.
,
Holm
,
T.
, and
Martinsen
,
Ø. G.
,
2021
, “
Simple Circuit Equivalents for the Constant Phase Element
,”
PLoS One
,
16
(
3
), p.
e0248786
.
26.
Ania
,
C. O.
,
Pernak
,
J.
,
Stefaniak
,
F.
,
Raymundo-Piñero
,
E.
, and
Béguin
,
F.
,
2006
, “
Solvent-Free Ionic Liquids as in Situ Probes for Assessing the Effect of ion Size on the Performance of Electrical Double Layer Capacitors
,”
Carbon
,
44
(
14
), pp.
3126
3130
.
You do not currently have access to this content.