Abstract

This work presents a physics-informed fusion methodology for deformation detection using multi-sensor thermal data. A challenge with additive manufacturing (AM) is that abnormalities commonly occur due to rapid changes in the thermal gradient. Different non-destructive in-situ thermal sensors capture parts of the thermal history but are limited by the visible temperature spectrum and sensor field of view of the fabrication process. Various sensors mitigate problems with the loss of thermal history information; however, it brings forth challenges with integrating different data streams and the need to interpolate the internal thermal history. This study develops a thermal data-informed heat flux methodology that fills the gap in fusing numerical temperature approximation with data-driven knowledge of the surface of additive manufactured components. First, this study fuses infrared (IR) thermal data complexities during the AM process with the Goldak double ellipsoidal heat flux to model the energy input into the component. Second, a thermal physics-informed model input (PIMI) is created with thermal data-informed heat flux to capture internal thermal history. Lastly, a regression convolutional neural network (CNN) captures the relationship between the three-dimensional thermal gradient and the resulting surface deformation. The rapid thermal gradient formation and identification of deformation is a key step toward using thermal history data and machine learning to improve quality control in AM. The proposed surface deformation detection model achieved an mean squared error of 1.14 mm and an R2 of 0.89 in the case study when fabricating thin-walled structures.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Moylan
,
S. P.
,
2022
,
The Strategy for American Leadership in High-Consequence Additive Manufacturing
,
National Institute of Standards and Technology
,
Gaithersburg, MD
, Paper No. NIST AMS 600-10.
2.
Wu
,
B.
,
Pan
,
Z.
,
Ding
,
D.
,
Cuiuri
,
D.
,
Li
,
H.
,
Xu
,
J.
, and
Norrish
,
J.
,
2018
, “
A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement
,”
J. Manuf. Processes
,
35
, pp.
127
139
.
3.
Cai
,
S.
,
Wang
,
Z.
,
Wang
,
S.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2021
, “
Physics-Informed Neural Networks for Heat Transfer Problems
,”
ASME J. Heat Transfer
,
143
(
6
), p.
060801
.
4.
Francis
,
J.
, and
Bian
,
L.
,
2019
, “
Deep Learning for Distortion Prediction in Laser-Based Additive Manufacturing Using Big Data
,”
Manuf. Lett.
,
20
, pp.
10
14
.
5.
Cunningham
,
C. R.
,
Flynn
,
J. M.
,
Shokrani
,
A.
,
Dhokia
,
V.
, and
Newman
,
S. T.
,
2018
, “
Invited Review Article: Strategies and Processes for High Quality Wire Arc Additive Manufacturing
,”
Addit. Manuf.
,
22
, pp.
672
686
.
6.
Xie
,
D.
,
Lv
,
F.
,
Yang
,
Y.
,
Shen
,
L.
,
Tian
,
Z.
,
Shuai
,
C.
,
Chen
,
B.
, and
Zhao
,
J.
,
2022
, “
A Review on Distortion and Residual Stress in Additive Manufacturing
,”
Chin. J. Mech. Eng.: Addit. Manuf. Front.
,
1
(
3
), p.
100039
.
7.
Chen
,
S.
,
Gao
,
H.
,
Zhang
,
Y.
,
Wu
,
Q.
,
Gao
,
Z.
, and
Zhou
,
X.
,
2022
, “
Review on Residual Stresses in Metal Additive Manufacturing: Formation Mechanisms, Parameter Dependencies, Prediction and Control Approaches
,”
J. Mater. Res. Technol.
,
17
, pp.
2950
2974
.
8.
Liu
,
G.
,
Zhang
,
X.
,
Chen
,
X.
,
He
,
Y.
,
Cheng
,
L.
,
Huo
,
M.
,
Yin
,
J.
, et al
,
2021
, “
Additive Manufacturing of Structural Materials
,”
Mater. Sci. Eng. R Rep.
,
145
, p.
100596
.
9.
Wu
,
Q.
,
Mukherjee
,
T.
,
De
,
A.
, and
DebRoy
,
T.
,
2020
, “
Residual Stresses in Wire-Arc Additive Manufacturing – Hierarchy of Influential Variables
,”
Addit. Manuf.
,
35
, p.
101355
.
10.
DebRoy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A. D.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components – Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.
11.
Aboutaleb
,
A. M.
,
Bian
,
L.
,
Elwany
,
A.
,
Shamsaei
,
N.
,
Thompson
,
S. M.
, and
Tapia
,
G.
,
2017
, “
Accelerated Process Optimization for Laser-Based Additive Manufacturing by Leveraging Similar Prior Studies
,”
IISE Trans.
,
49
(
1
), pp.
31
44
.
12.
Aboutaleb
,
A. M.
,
Bian
,
L.
,
Shamsaei
,
N.
,
Thompson
,
S. M.
, and
Rao
,
P. K.
,
2016
, “
Multi-Objective Process Optimization of Additive Manufacturing: A Case Study on GeometryAccuracy Optimization
,”
Annual International Solid Freeform Fabrication Symposium
, pp.
656
669
.
13.
Sabbaghi
,
A.
,
Dasgupta
,
T.
,
Huang
,
Q.
, and
Zhang
,
J.
,
2014
, “
Inference for Deformation and Interference in 3D Printing
,”
Ann. Appl. Stat.
,
8
(
3
), pp.
1395
1415
.
14.
Liu
,
J.
,
Gaynor
,
A. T.
,
Chen
,
S.
,
Kang
,
Z.
,
Suresh
,
K.
,
Takezawa
,
A.
,
Li
,
L.
, et al
,
2018
, “
Current and Future Trends in Topology Optimization for Additive Manufacturing
,”
Struct. Multidisc. Optim.
,
57
(
6
), pp.
2457
2483
.
15.
Huang
,
Q.
,
Zhang
,
J.
,
Sabbaghi
,
A.
, and
Dasgupta
,
T.
,
2015
, “
Optimal Offline Compensation of Shape Shrinkage for Three-Dimensional Printing Processes
,”
IIE Trans.
,
47
(
5
), pp.
431
441
.
16.
Montevecchi
,
F.
,
Venturini
,
G.
,
Scippa
,
A.
, and
Campatelli
,
G.
,
2016
, “
Finite Element Modelling of Wire-Arc-Additive-Manufacturing Process
,”
Procedia CIRP
,
55
, pp.
109
114
.
17.
Barath Kumar
,
M. D.
, and
Manikandan
,
M.
,
2022
, “
Assessment of Process, Parameters, Residual Stress Mitigation, Post Treatments and Finite Element Analysis Simulations of Wire Arc Additive Manufacturing Technique
,”
Met. Mater. Int.
,
28
(
1
), pp.
54
111
.
18.
Montevecchi
,
F.
,
Venturini
,
G.
,
Grossi
,
N.
,
Scippa
,
A.
, and
Campatelli
,
G.
,
2018
, “
Idle Time Selection for Wire-Arc Additive Manufacturing: A Finite Element-Based Technique
,”
Addit. Manuf.
,
21
, pp.
479
486
.
19.
Geng
,
R.
,
Du
,
J.
,
Wei
,
Z.
,
Xu
,
S.
, and
Ma
,
N.
,
2021
, “
Modelling and Experimental Observation of the Deposition Geometry and Microstructure Evolution of Aluminum Alloy Fabricated by Wire-Arc Additive Manufacturing
,”
J. Manuf. Processes
,
64
, pp.
369
378
.
20.
Geng
,
H.
,
Li
,
J.
,
Xiong
,
J.
, and
Lin
,
X.
,
2017
, “
Optimisation of Interpass Temperature and Heat Input for Wire and Arc Additive Manufacturing 5A06 Aluminium Alloy
,”
Sci. Technol. Weld. Joining
,
22
(
6
), pp.
472
483
.
21.
Rosenthal
,
D.
,
1946
, “
The Theory of Moving Sources of Heat and Its Application to Metal Treatments
,”
J. Fluid. Eng.
,
68
(
8
), pp.
849
865
.
22.
Promoppatum
,
P.
,
Yao
,
S.-C.
,
Pistorius
,
P. C.
, and
Rollett
,
A. D.
,
2017
, “
A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion
,”
Engineering
,
3
(
5
), pp.
685
694
.
23.
Nguyen
,
N. T.
,
Ohta
,
A.
,
Matsuoka
,
K.
,
Suzuki
,
N.
, and
Maeda
,
Y.
,
1999
, “
Analytical Solutions for Transient Temperature of Semi-Infinite Body Subjected to 3-D Moving Heat Sources
,”
Weld. J.-N. Y.
,
78
, p.
265-S
.
24.
Francis
,
J.
,
Sabbaghi
,
A.
,
Ravi Shankar
,
M.
,
Ghasri-Khouzani
,
M.
, and
Bian
,
L.
,
2020
, “
Efficient Distortion Prediction of Additively Manufactured Parts Using Bayesian Model Transfer Between Material Systems
,”
ASME J. Manuf. Sci. Eng.
,
142
(
5
), p.
051001
.
25.
Lee
,
C.
,
Seo
,
G.
,
Kim
,
D. B.
,
Kim
,
M.
, and
Shin
,
J.-H.
,
2021
, “
Development of Defect Detection AI Model for Wire + Arc Additive Manufacturing Using High Dynamic Range Images
,”
Appl. Sci.
,
11
(
16
), p.
7541
.
26.
Zhou
,
F.
,
Liu
,
X.
,
Zhang
,
X.
,
Liu
,
Y.
,
Jia
,
C.
, and
Wu
,
C.
,
2022
, “
Keyhole Status Prediction Based on Voting Ensemble Convolutional Neural Networks and Visualization by Grad-CAM in PAW
,”
J. Manuf. Processes
,
80
, pp.
805
815
.
27.
Guo
,
S.
,
Agarwal
,
M.
,
Cooper
,
C.
,
Tian
,
Q.
,
Gao
,
R. X.
,
Grace
,
W. G.
, and
Guo
,
Y. B.
,
2022
, “
Machine Learning for Metal Additive Manufacturing: Towards a Physics-Informed Data-Driven Paradigm
,”
J. Manuf. Syst.
,
62
, pp.
145
163
.
28.
Tian
,
Q.
,
Guo
,
S.
, and
Guo
,
Y.
,
2020
, “
A Physics-Driven Deep Learning Model for Process-Porosity Causal Relationship and Porosity Prediction With Interpretability in Laser Metal Deposition
,”
CIRP Ann.
,
69
(
1
), pp.
205
208
.
29.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
30.
Howland
,
M. F.
, and
Dabiri
,
J. O.
,
2019
, “
Wind Farm Modeling With Interpretable Physics-Informed Machine Learning
,”
Energies
,
12
(
14
), p.
2716
.
31.
Li
,
T.
, and
Chen
,
X.
,
2021
, “
WaveletKernelNet: An Interpretable Deep Neural Network for Industrial Intelligent Diagnosis
,”
IEEE Trans. Syst. Man Cybernet.: Syst.
,
52
(
4
), pp.
2302
2312
.
32.
Selvaraju
,
R. R.
,
Cogswell
,
M.
,
Das
,
A.
,
Vedantam
,
R.
,
Parikh
,
D.
, and
Batra
,
D.
,
2020
, “
Grad-CAM: Visual Explanations From Deep Networks via Gradient-Based Localization
,”
Int. J. Comput. Vis.
,
128
(
2
), pp.
336
359
.
33.
Xie
,
X.
,
Bennett
,
J.
,
Saha
,
S.
,
Lu
,
Y.
,
Cao
,
J.
,
Liu
,
W. K.
, and
Gan
,
Z.
,
2021
, “
Mechanistic Data-Driven Prediction of As-Built Mechanical Properties in Metal Additive Manufacturing
,”
NPJ Comput. Mater.
,
7
(
1
), p.
86
.
34.
Ren
,
K.
,
Chew
,
Y.
,
Zhang
,
Y. F.
,
Fuh
,
J. Y. H.
, and
Bi
,
G. J.
,
2020
, “
Thermal Field Prediction for Laser Scanning Paths in Laser Aided Additive Manufacturing by Physics-Based Machine Learning
,”
Comput. Methods Appl. Mech. Eng.
,
362
, p.
112734
.
35.
Liu
,
R.
,
Liu
,
S.
, and
Zhang
,
X.
,
2021
, “
A Physics-Informed Machine Learning Model for Porosity Analysis in Laser Powder Bed Fusion Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
113
(
7–8
), pp.
1943
1958
.
36.
Seifi
,
S. H.
,
Yadollahi
,
A.
,
Tian
,
W.
,
Doude
,
H.
,
Hammond
,
V. H.
, and
Bian
,
L.
,
2021
, “
In Situ Nondestructive Fatigue-Life Prediction of Additive Manufactured Parts by Establishing a Process–Defect–Property Relationship
,”
Adv. Intell. Syst.
,
3
(
12
), p.
2000268
.
37.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Tschopp
,
M. A.
,
Doude
,
H. R.
,
Marufuzzaman
,
M.
, and
Bian
,
L.
,
2019
, “
In-Situ Monitoring of Melt Pool Images for Porosity Prediction in Directed Energy Deposition Processes
,”
IISE Trans.
,
51
(
5
), pp.
437
455
.
38.
Vasudevan
,
M.
,
Chandrasekhar
,
N.
,
Maduraimuthu
,
V.
,
Bhaduri
,
A. K.
, and
Raj
,
B.
,
2011
, “
Real-Time Monitoring of Weld Pool During GTAW Using Infra-Red Thermography and Analysis of Infra-Red Thermal Images
,”
Weld. World
,
55
(
7–8
), pp.
83
89
.
39.
Lee
,
D.-H.
, and
Cho
,
N.-G.
,
2012
, “
Assessment of Surface Profile Data Acquired by a Stylus Profilometer
,”
Meas. Sci. Technol.
,
23
(
10
), p.
105601
.
40.
Van der Jeught
,
S.
, and
Dirckx
,
J. J. J.
,
2016
, “
Real-Time Structured Light Profilometry: A Review
,”
Opt. Lasers Eng.
,
87
, pp.
18
31
.
42.
Keyence
, “Instant 3D Measurement Over a Wide Area.” https://www.keyence.com/ss/products/measure-sys/vr/.
43.
Bayat
,
M.
,
Dong
,
W.
,
Thorborg
,
J.
,
To
,
A. C.
, and
Hattel
,
J. H.
,
2021
, “
A Review of Multi-Scale and Multi-Physics Simulations of Metal Additive Manufacturing Processes With Focus on Modeling Strategies
,”
Addit. Manuf.
,
47
, p.
102278
.
44.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
MTB
,
15
(
2
), pp.
299
305
.
45.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
, et al
,
2011
, “Scikit-Learn: Machine Learning in Python,” https://scikit-learn.org/stable/
46.
Apicella
,
A.
,
Donnarumma
,
F.
,
Isgrò
,
F.
, and
Prevete
,
R.
,
2021
, “
A Survey on Modern Trainable Activation Functions
,”
Neural Networks
,
138
, pp.
14
32
.
47.
Nagi
,
J.
,
Ducatelle
,
F.
,
Di Caro
,
G. A.
,
Cireşan
,
D.
,
Meier
,
U.
,
Giusti
,
A.
,
Nagi
,
F.
,
Schmidhuber
,
J.
, and
Gambardella
,
L. M.
,
2011
, “
Max-Pooling Convolutional Neural Networks for Vision-Based Hand Gesture Recognition
,”
Proceedings of the 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)
,
Kuala Lumpur, Malaysia
,
IEEE
, pp.
342
347
.
48.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
49.
De Sousa Figueiredo
,
G. G.
,
De Mello Picchi
,
I. B.
,
Lima Dos Santos
,
M.
,
López
,
E. A. T.
,
Oliveira
,
J. P.
, and
De Abreu Santos
,
T. F.
,
2023
, “
Parametric Study and Response Optimization for the Wire + Arc Additive Manufacturing of 316LSi via Pulsed GMAW
,”
Int. J. Adv. Manuf. Technol.
,
129
(
7–8
), pp.
3073
3092
.
50.
Register
,
M.
, and
Priddy
,
M. W.
,
2022
, “
Effects due to Variations in Thermal Properties of Maraging Steel for Finite Element Modeling of the WAAM Process
,”
Proceedings of the Solid Freeform Fabrication Symposium–An Additive Manufacturing Conference
,
Austin, TX
.
51.
Vincent
,
O.
, and
Folorunso
,
O.
,
2009
, “
A Descriptive Algorithm for Sobel Image Edge Detection
,”
Proceedings of the InSITE 2009: Informing Science + IT Education Conference
.
52.
M.
Abadi
,
Agarwal
A
,
Barham
P
,
Brevdo
E
,
Chen
Z
,
Citro
C
,
Corrado
GS
,
Davis
A
,
Dean
J
,
Devin
M
,
Ghemawat
S
, “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.” https://www.tensorflow.org/
53.
Wang
,
Z.
, and
Bovik
,
A. C.
,
2002
, “
A Universal Image Quality Index
,”
IEEE Signal Process. Lett.
,
9
(
3
), pp.
81
84
.
You do not currently have access to this content.