Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In this study, we proposed a measurement system that compensates for orthogonality in planar stages and demonstrated its principle. The proposed measurement system consists of a single diffraction grating scale placed diagonally across the stage and two interferometers aligned in a Littrow configuration, which are sensitive only to stage displacement in the optical axis direction. The direction of measurement is determined with high accuracy by the pitch of the diffraction grating and optical wavelength of the laser, allowing orthogonality compensation. In the experiments, we demonstrated that the interferometer aligned at Littrow configuration was capable of measuring the stage displacement component in the optical axis direction. In the discussion, our assessment of orthogonality identified two crucial factors: (1) how accurately the Littrow configuration can be aligned and (2) the accuracy of the pitch of the grating scale.

References

1.
Gao
,
W.
,
Ibaraki
,
S.
,
Donmez
,
M. A.
,
Kono
,
D.
,
Mayer
,
J. R. R.
,
Chen
,
Y.-L.
,
Szipka
,
K.
,
Archenti
,
A.
,
Linares
,
J.-M.
, and
Suzuki
,
N.
,
2023
, “
Machine Tool Calibration: Measurement, Modeling, and Compensation of Machine Tool Errors
,”
Int. J. Mach. Tools Manuf.
,
187
, p.
104017
.
2.
Gao
,
W.
,
Kim
,
S. W.
,
Bosse
,
H.
,
Haitjema
,
H.
,
Chen
,
Y. L.
,
Lu
,
X. D.
,
Knapp
,
W.
,
Weckenmann
,
A.
,
Estler
,
W. T.
, and
Kunzmann
,
H.
,
2015
, “
Measurement Technologies for Precision Positioning
,”
CIRP Ann.
,
64
(
2
), pp.
773
796
.
3.
Manske
,
E.
,
Jäger
,
G.
,
Hausotte
,
T.
, and
Füßl
,
R.
,
2012
, “
Recent Developments and Challenges of Nanopositioning and Nanomeasuring Technology
,”
Meas. Sci. Technol.
,
23
(
7
), p.
074001
.
4.
Torralba
,
M.
,
Valenzuela
,
M.
,
Yagüe-Fabra
,
J. A.
,
Albajez
,
J. A.
, and
Aguilar
,
J. J.
,
2016
, “
Large Range Nanopositioning Stage Design: A Three-Layer and Two-Stage Platform
,”
Measurement
,
89
, pp.
55
71
.
5.
Lan
,
H.
,
Ding
,
Y.
,
Liu
,
H.
, and
Lu
,
B.
,
2007
, “
Review of the Wafer Stage for Nanoimprint Lithography
,”
Microelectron. Eng.
,
84
(
4
), pp.
684
688
.
6.
Liu
,
Y.
, and
Zhang
,
Z.
,
2022
, “
A Large Range Compliant Nano-Manipulator Supporting Electron Beam Lithography
,”
ASME J. Mech. Des.
,
144
(
4
), p.
043303
.
7.
Stauffenberg
,
J.
,
Belkner
,
J.
,
Dontsov
,
D.
,
Herzog
,
L.
,
Hesse
,
S.
,
Rangelow
,
I. W.
,
Ortlepp
,
I.
,
Kissinger
,
T.
, and
Manske
,
E.
,
2024
, “
Investigations on Tip-Based Large Area Nanofabrication and Nanometrology Using a Planar Nanopositioning Machine (NFM-100)
,”
Meas. Sci. Technol.
,
35
(
8
), p.
085011
.
8.
Michihata
,
M.
,
Ueda
,
S.
,
Takahashi
,
S.
,
Takamasu
,
K.
, and
Takaya
,
Y.
,
2017
, “
Scanning Dimensional Measurement Using Laser-Trapped Microsphere With Optical Standing-Wave Scale
,”
Opt. Eng.
,
56
(
6
), p.
064103
.
9.
Chalfoun
,
J.
,
Majurski
,
M.
,
Blattner
,
T.
,
Bhadriraju
,
K.
,
Keyrouz
,
W.
,
Bajcsy
,
P.
, and
Brady
,
M.
,
2017
, “
MIST: Accurate and Scalable Microscopy Image Stitching Tool With Stage Modeling and Error Minimization
,”
Sci. Rep.
,
7
(
1
), p.
4988
.
10.
Michihata
,
M.
,
Kim
,
J.
,
Takahashi
,
S.
,
Takamasu
,
K.
,
Mizutani
,
Y.
, and
Takaya
,
Y.
,
2018
, “
Surface Imaging Technique by an Optically Trapped Microsphere in Air Condition
,”
Nanomanuf. Metrol.
,
1
(
1
), pp.
32
38
.
11.
Chae
,
J.
, and
Park
,
S. S.
,
2007
, “
High Frequency Bandwidth Measurements of Micro Cutting Forces
,”
Int. J. Mach. Tools Manuf.
,
47
(
9
), pp.
1433
1441
.
12.
Shinno
,
H.
,
Yoshioka
,
H.
, and
Taniguchi
,
K.
,
2007
, “
A Newly Developed Linear Motor-Driven Aerostatic X-Y Planar Motion Table System for Nano-Machining
,”
CIRP Ann.
,
56
(
1
), pp.
369
372
.
13.
Yang
,
P.
,
Takamura
,
T.
,
Takahashi
,
S.
,
Takamasu
,
K.
,
Sato
,
O.
,
Osawa
,
S.
, and
Takatsuji
,
T.
,
2011
, “
Development of High-Precision Micro-Coordinate Measuring Machine: Multi-Probe Measurement System for Measuring Yaw and Straightness Motion Error of XY Linear Stage
,”
Precis. Eng.
,
35
(
3
), pp.
424
430
.
14.
Michihata
,
M.
,
2022
, “
Surface-Sensing Principle of Microprobe System for Micro-Scale Coordinate Metrology: A Review
,”
Metrology
,
2
(
1
), pp.
46
72
.
15.
Gao
,
W.
,
Arai
,
Y.
,
Shibuya
,
A.
,
Kiyono
,
S.
, and
Park
,
C. H.
,
2006
, “
Measurement of Multi-Degree-of-Freedom Error Motions of a Precision Linear Air-Bearing Stage
,”
Precis. Eng.
,
30
(
1
), pp.
96
103
.
16.
Fesperman
,
R.
,
Ozturk
,
O.
,
Hocken
,
R.
,
Ruben
,
S.
,
Tsao
,
T.-C.
,
Phippsa
,
J.
,
Lemmons
,
T.
,
Brien
,
J.
, and
Caskey
,
G.
,
2012
, “
Multi-Scale Alignment and Positioning System – MAPS
,”
Precis. Eng.
,
36
(
4
), pp.
517
537
.
17.
Chassagne
,
L.
,
Wakim
,
M.
,
Xu
,
S.
,
Topçu
,
S.
,
Ruaux
,
P.
,
Juncar
,
P.
, and
Alayli
,
Y.
,
2007
, “
A 2D Nano-Positioning System With Sub-Nanometric Repeatability Over the Millimetre Displacement Range
,”
Meas. Sci. Technol.
,
18
(
11
), p.
3267
.
18.
Kim
,
D.
,
Lee
,
D. Y.
, and
Gweon
,
D. G.
,
2007
, “
A New Nano-Accuracy AFM System for Minimizing Abbe Errors and the Evaluation of Its Measuring Uncertainty
,”
Ultramicroscopy
,
107
(
4-5
), pp.
322
328
.
19.
Holmes
,
M.
,
Hocken
,
R.
, and
Trumper
,
D.
,
2000
, “
The Long-Range Scanning Stage: A Novel Platform for Scanned-Probe Microscopy
,”
Precis. Eng.
,
24
(
3
), pp.
191
209
.
20.
Torralba
,
M.
,
Yagüe-Fabra
,
J. A.
,
Albajez
,
J. A.
, and
Aguilar
,
J. J.
,
2016
, “
Design Optimization for the Measurement Accuracy Improvement of a Large Range Nanopositioning Stage
,”
Sensors
,
16
(
1
), p.
84
.
21.
Evans
,
C. J.
,
Hocken
,
R. J.
, and
Estler
,
W. T.
,
1996
, “
Self-Calibration: Reversal, Redundancy, Error Separation, and ‘Absolute Testing’
,”
CIRP Ann.
,
45
(
2
), pp.
617
634
.
22.
Shimizu
,
Y.
,
2021
, “
Laser Interference Lithography for Fabrication of Planar Scale Gratings for Optical Metrology
,”
Nanomanuf. Metrol.
,
4
, pp.
3
27
.
23.
Claverley
,
J. D.
, and
Leach
,
R. K.
,
2015
, “
A Review of the Existing Performance Verification Infrastructure for Micro-CMMs
,”
Precis. Eng.
,
39
, pp.
1
15
.
24.
Quan
,
L.
,
Shimizu
,
Y.
,
Sato
,
R.
,
Shin
,
D. W.
,
Matsukuma
,
H.
,
Archenti
,
A.
, and
Gao
,
W.
,
2022
, “
Design and Testing of a Compact Optical Angle Sensor for Pitch Deviation Measurement of a Scale Grating With a Small Angle of Diffraction
,”
Int. J. Autom. Technol.
,
16
(
5
), pp.
572
581
.
25.
Hsu
,
C.-C.
,
Tsai
,
C.-M.
,
Ye
,
C.-Y.
,
Chen
,
P.-L.
,
Lee
,
T.-T.
, and
Dai
,
Z.-X.
,
2024
, “
Period Measurement of a Periodic Structure by Using a Heterodyne Grating Interferometer
,”
Appl. Opt.
,
63
(
15
), pp.
4211
4218
.
26.
Masui
,
S.
,
Goda
,
S.
,
Kadoya
,
S.
,
Michihata
,
M.
, and
Takahashi
,
S.
,
2021
, “
Grating Periods Measurement of Multi-Pitched Grating Using Littrow Configuration External Cavity Diode Laser
,”
Appl. Phys. Express
,
14
(
7
), p.
076501
.
27.
Mroziewicz
,
B.
,
2008
, “
External Cavity Wavelength Tunable Semiconductor Lasers – A Review
,”
Opto-Electron. Rev.
,
16
(
4
), pp.
347
366
.
28.
Michihata
,
M.
,
Goda
,
S.
,
Masui
,
S.
, and
Takahashi
,
S.
,
2024
, “
Longitudinal Mode Number Estimation of External Cavity Diode Laser Using Dual Periodic Grating for Optical Profiler System
,”
Sensors
,
24
(
12
), p.
3821
.
29.
Lin
,
Z.
,
Yao
,
Y.
,
Xie
,
Z.
,
Xue
,
D.
,
Zhou
,
T.
,
Tang
,
Z.
,
Lei
,
L.
, et al
,
2024
, “
Optimization and Fabrication of Chromium Grating in Self-Traceable Interferometer
,”
Precis. Eng.
,
86
, pp.
285
293
.
30.
Schweitzer
,
W. G.
,
Kessler
,
E. G.
,
Deslattes
,
R. D.
,
Layer
,
H. P.
, and
Whetstone
,
J. R.
,
1973
, “
Description, Performance, and Wavelengths of Iodine Stabilized Lasers
,”
Appl. Opt.
,
12
(
12
), pp.
2927
2938
.
31.
Ciddor
,
P. E.
,
1996
, “
Refractive Index of Air: New Equations for the Visible and Near Infrared
,”
Appl. Opt.
,
35
(
9
), pp.
1566
1573
.
32.
Buhr
,
E.
,
Michaelis
,
W.
,
Diener
,
A.
, and
Mirandé
,
W.
,
2007
, “
Multi-Wavelength VIS/UV Optical Diffractometer for High-Accuracy Calibration of Nano-Scale Pitch Standards
,”
Meas. Sci. Technol.
,
18
(
3
), p.
667
.
33.
Takeda
,
M.
,
Ina
,
H.
, and
Kobayashi
,
S.
,
1982
, “
Fourier-Transform Method of Fringe-Pattern Analysis for Computer-Based Topography and Interferometry
,”
J. Opt. Soc. Am.
,
72
(
1
), pp.
156
160
.
34.
Smythe
,
R.
, and
Moore
,
R.
,
1984
, “
Instantaneous Phase Measuring Interferometry
,”
Opt. Eng.
,
23
(
4
), p.
234361
.
35.
Badami
,
V. G.
, and
de Groot
,
P. J.
,
2016
, “Displacement Measuring Interferometry,”
Handbook of Optical Dimensional Metrology
,
K.
Harding
, ed.,
CRC Press
,
Boca Raton, FL
, pp.
157
238
.
36.
Shur
,
V. L.
,
Lukin
,
A. Y.
,
Shestopalov
,
Y. N.
, and
Popov
,
O. I.
,
2005
, “
Two-Coordinate Digital Autocollimator
,”
Meas. Tech.
,
48
(
9
), pp.
901
906
.
37.
Wang
,
S.
,
Ma
,
R.
,
Cao
,
F.
,
Luo
,
L.
, and
Li
,
X.
,
2024
, “
A Review: High-Precision Angle Measurement Technologies
,”
Sensors
,
24
(
6
), p.
1755
.
You do not currently have access to this content.