Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Pulse electrochemical machining (PECM) is an unconventional material removal process, widely applied to machine or shape difficult-to-machine materials. A new concept of reproducing three-dimensional (3D) microstructures has been developed and elaborated. Picosecond laser was utilized to produce concave or convex patterns on PECM cathodes, and pattern replication was carried out to PECM anodes. The laser achieved high machining precision and excellent surface integrity; both patterns were successfully replicated on the anodes. However, considerable deviations were found in the reproduced concave patterns on the anodes, possibly due to the rounding and widening effects.

References

1.
Machado
,
A. R.
,
da Silva
,
L. R. R.
,
de Souza
,
F. C. R.
,
Davis
,
R.
,
Pereira
,
L. C.
,
Sales
,
W. F.
,
de Rossi
,
W.
, and
Ezugwu
,
E. O.
,
2021
, “
State of the Art of Tool Texturing in Machining
,”
J. Mater. Process. Technol.
,
293
, p.
117096
.
2.
Liu
,
W.
,
Liu
,
S.
, and
Wang
,
L.
,
2019
, “
Surface Modification of Biomedical Titanium Alloy: Micromorphology, Microstructure Evolution and Biomedical Applications
,”
Coatings
,
9
(
4
), p.
249
.
3.
Siegel
,
F.
,
2009
, “
Extensive Micro-Structuring of Metals Using Picosecond Pulses—Ablation Behavior and Industrial Relevance
,”
J. Laser Micro/Nanoeng.
,
4
(
2
), pp.
104
110
.
4.
Birch
,
M. A.
,
Johnson-Lynn
,
S.
,
Nouraei
,
S.
,
Wu
,
Q.-B.
,
Ngalim
,
S.
,
Lu
,
W.-J.
,
Watchorn
,
C.
,
Yang
,
T.-Y.
,
McCaskie
,
A. W.
, and
Roy
,
S.
,
2012
, “
Effect of Electrochemical Structuring of Ti6Al4V on Osteoblast Behaviour In Vitro
,”
Biomed. Mater.
,
7
(
3
), p.
035016
.
5.
Klocke
,
F.
,
Zeis
,
M.
,
Klink
,
A.
, and
Veselovac
,
D.
,
2012
, “
Technological and Economical Comparison of Roughing Strategies via Milling, EDM and ECM for Titanium-and Nickel-Based Blisks
,”
Procedia CIRP
,
2
(
1
), pp.
98
101
.
6.
De Bartolomeis
,
A.
,
Newman
,
S. T.
,
Jawahir
,
I. S.
,
Biermann
,
D.
, and
Shokrani
,
A.
,
2021
, “
Future Research Directions in the Machining of Inconel 718
,”
J. Mater. Process. Technol.
,
297
, p.
117260
.
7.
Khan
,
S. A.
,
Soo
,
S. L.
,
Aspinwall
,
D. K.
,
Sage
,
C.
,
Harden
,
P.
,
Fleming
,
M.
,
White
,
A.
, and
M'Saoubi
,
R.
,
2012
, “
Tool Wear/Life Evaluation When Finish Turning Inconel 718 Using PCBN Tooling
,”
Procedia CIRP
,
1
(
1
), pp.
283
288
.
8.
Klocke
,
F.
, and
König
,
W.
, eds.,
2006
, “Elektrochemisches Abtragen (ECM),”
Fertigungsverfahren 3
,
Springer
,
Berlin, Heidelberg
, pp.
133
185
.
9.
Fang
,
S.
,
Frank
,
A.
,
Schäfer
,
M.
, and
Bähre
,
D.
,
2023
, “
Implementation of a Picosecond Laser for Micromachining the Cathode of Pulse Electrochemical Machining (PECM) and a Case Study
,”
ASME J. Micro Nano-Manuf.
,
10
(
4
), p.
044501
.
10.
Fang
,
S.
,
Ernst
,
A.
,
Llanes
,
L.
, and
Bähre
,
D.
,
2020
, “
Laser Surface Texturing of PECM Tools and the Validation
,”
Procedia CIRP
,
95
, pp.
891
896
.
11.
Sun
,
Y.
,
Ling
,
S.
,
Zhao
,
D.
,
Liu
,
J.
,
Liu
,
Z.
, and
Song
,
J.
,
2020
, “
Through-Mask Electrochemical Micromachining of Micro Pillar Arrays on Aluminum
,”
Surf. Coat. Technol.
,
401
, p.
126277
.
12.
Weinmann
,
M.
,
Weber
,
O.
,
Bähre
,
D.
,
Munief
,
W.
,
Saumer
,
M.
, and
Natter
,
H.
,
2014
, “
Photolithography—Electroforming—Pulse Electrochemical Machining: An Innovative Process Chain for the High Precision and Reproducible Manufacturing of Complex Microstructures
,”
Int. J. Electrochem. Sci.
,
9
(
7
), pp.
3917
3927
.
13.
Koyano
,
T.
,
Hosokawa
,
A.
,
Takahashi
,
T.
, and
Ueda
,
T.
,
2019
, “
One-Process Surface Texturing of a Large Area by Electrochemical Machining With Short Voltage Pulses
,”
CIRP Ann.
,
68
(
1
), pp.
181
184
.
14.
Le Harzic
,
R.
,
Huot
,
N.
,
Audouard
,
E.
,
Jonin
,
C.
,
Laporte
,
P.
,
Valette
,
S.
,
Fraczkiewicz
,
A.
, and
Fortunier
,
R.
,
2002
, “
Comparison of Heat-Affected Zones Due to Nanosecond and Femtosecond Laser Pulses Using Transmission Electronic Microscopy
,”
Appl. Phys. Lett.
,
80
(
21
), pp.
3886
3888
.
15.
Nolte
,
S.
,
Momma
,
C.
,
Jacobs
,
H.
,
Tünnermann
,
A.
,
Chichkov
,
B. N.
,
Wellegehausen
,
B.
, and
Welling
,
H.
,
1997
, “
Ablation of Metals by Ultrashort Laser Pulses
,”
J. Opt. Soc. Am. B
,
14
(
10
), p.
2716
.
16.
Etsion
,
I.
,
2005
, “
State of the Art in Laser Surface Texturing
,”
ASME J. Tribol.
,
127
(
1
), pp.
248
253
.
17.
Kapłonek
,
W.
, and
Nadolny
,
K.
,
2015
, “
Laser Methods Based on an Analysis of Scattered Light for Automated, in-Process Inspection of Machined Surfaces: A Review
,”
Optik
,
126
(
20
), pp.
2764
2770
.
18.
Förster
,
R.
,
2004
, “
Untersuchung des Potentials Elektrochemischer Senkbearbeitung mit Oszillierender Werkzeugelektrode für Strukturierungsaufgaben der Mikrosystemtechnik
,”
Dissertation
,
Albert-Ludwigs-Universität Freiburg im Breisgau
,
Freiburg
.
19.
Rebschläger
,
A.
,
2015
, “
Recording, Processing and Use of Material-Specific Data in Pulse Electrochemical Machining
,”
Dissertation
,
Universität des Saarlandes
,
Saarbrücken
.
20.
Steuer
,
P.
,
2016
, “
Gepulste Elektrochemische Bearbeitung von Kupferelektroden und Deren Einsatz zur Funkenerosiven Strukturierung von Hartmetall
,”
Dissertation
,
Universität des Saarlandes
,
Saarbrücken
.
You do not currently have access to this content.