Graphical Abstract Figure
Keywords:
pulse electrochemical machining (PECM),
ultrashort pulse laser,
surface texturing,
surface topography,
precision machining,
advanced materials and processing,
electrical and electrochemical machining,
laser processes,
machining processes,
micro- and nano-machining and processing,
precision and ultra-precision machining
Abstract
Pulse electrochemical machining (PECM) is an unconventional material removal process, widely applied to machine or shape difficult-to-machine materials. A new concept of reproducing three-dimensional (3D) microstructures has been developed and elaborated. Picosecond laser was utilized to produce concave or convex patterns on PECM cathodes, and pattern replication was carried out to PECM anodes. The laser achieved high machining precision and excellent surface integrity; both patterns were successfully replicated on the anodes. However, considerable deviations were found in the reproduced concave patterns on the anodes, possibly due to the rounding and widening effects.
Keywords:
pulse electrochemical machining (PECM),
ultrashort pulse laser,
surface texturing,
surface topography,
precision machining,
advanced materials and processing,
electrical and electrochemical machining,
laser processes,
machining processes,
micro- and nano-machining and processing,
precision and ultra-precision machining
References
1.
Machado
, A. R.
, da Silva
, L. R. R.
, de Souza
, F. C. R.
, Davis
, R.
, Pereira
, L. C.
, Sales
, W. F.
, de Rossi
, W.
, and Ezugwu
, E. O.
, 2021
, “State of the Art of Tool Texturing in Machining
,” J. Mater. Process. Technol.
, 293
, p. 117096
. 2.
Liu
, W.
, Liu
, S.
, and Wang
, L.
, 2019
, “Surface Modification of Biomedical Titanium Alloy: Micromorphology, Microstructure Evolution and Biomedical Applications
,” Coatings
, 9
(4
), p. 249
. 3.
Siegel
, F.
, 2009
, “Extensive Micro-Structuring of Metals Using Picosecond Pulses—Ablation Behavior and Industrial Relevance
,” J. Laser Micro/Nanoeng.
, 4
(2
), pp. 104
–110
. 4.
Birch
, M. A.
, Johnson-Lynn
, S.
, Nouraei
, S.
, Wu
, Q.-B.
, Ngalim
, S.
, Lu
, W.-J.
, Watchorn
, C.
, Yang
, T.-Y.
, McCaskie
, A. W.
, and Roy
, S.
, 2012
, “Effect of Electrochemical Structuring of Ti6Al4V on Osteoblast Behaviour In Vitro
,” Biomed. Mater.
, 7
(3
), p. 035016
. 5.
Klocke
, F.
, Zeis
, M.
, Klink
, A.
, and Veselovac
, D.
, 2012
, “Technological and Economical Comparison of Roughing Strategies via Milling, EDM and ECM for Titanium-and Nickel-Based Blisks
,” Procedia CIRP
, 2
(1
), pp. 98
–101
. 6.
De Bartolomeis
, A.
, Newman
, S. T.
, Jawahir
, I. S.
, Biermann
, D.
, and Shokrani
, A.
, 2021
, “Future Research Directions in the Machining of Inconel 718
,” J. Mater. Process. Technol.
, 297
, p. 117260
. 7.
Khan
, S. A.
, Soo
, S. L.
, Aspinwall
, D. K.
, Sage
, C.
, Harden
, P.
, Fleming
, M.
, White
, A.
, and M'Saoubi
, R.
, 2012
, “Tool Wear/Life Evaluation When Finish Turning Inconel 718 Using PCBN Tooling
,” Procedia CIRP
, 1
(1
), pp. 283
–288
. 8.
Klocke
, F.
, and König
, W.
, eds., 2006
, “Elektrochemisches Abtragen (ECM),” Fertigungsverfahren 3
, Springer
, Berlin, Heidelberg
, pp. 133
–185
.9.
Fang
, S.
, Frank
, A.
, Schäfer
, M.
, and Bähre
, D.
, 2023
, “Implementation of a Picosecond Laser for Micromachining the Cathode of Pulse Electrochemical Machining (PECM) and a Case Study
,” ASME J. Micro Nano-Manuf.
, 10
(4
), p. 044501
. 10.
Fang
, S.
, Ernst
, A.
, Llanes
, L.
, and Bähre
, D.
, 2020
, “Laser Surface Texturing of PECM Tools and the Validation
,” Procedia CIRP
, 95
, pp. 891
–896
. 11.
Sun
, Y.
, Ling
, S.
, Zhao
, D.
, Liu
, J.
, Liu
, Z.
, and Song
, J.
, 2020
, “Through-Mask Electrochemical Micromachining of Micro Pillar Arrays on Aluminum
,” Surf. Coat. Technol.
, 401
, p. 126277
. 12.
Weinmann
, M.
, Weber
, O.
, Bähre
, D.
, Munief
, W.
, Saumer
, M.
, and Natter
, H.
, 2014
, “Photolithography—Electroforming—Pulse Electrochemical Machining: An Innovative Process Chain for the High Precision and Reproducible Manufacturing of Complex Microstructures
,” Int. J. Electrochem. Sci.
, 9
(7
), pp. 3917
–3927
. 13.
Koyano
, T.
, Hosokawa
, A.
, Takahashi
, T.
, and Ueda
, T.
, 2019
, “One-Process Surface Texturing of a Large Area by Electrochemical Machining With Short Voltage Pulses
,” CIRP Ann.
, 68
(1
), pp. 181
–184
. 14.
Le Harzic
, R.
, Huot
, N.
, Audouard
, E.
, Jonin
, C.
, Laporte
, P.
, Valette
, S.
, Fraczkiewicz
, A.
, and Fortunier
, R.
, 2002
, “Comparison of Heat-Affected Zones Due to Nanosecond and Femtosecond Laser Pulses Using Transmission Electronic Microscopy
,” Appl. Phys. Lett.
, 80
(21
), pp. 3886
–3888
. 15.
Nolte
, S.
, Momma
, C.
, Jacobs
, H.
, Tünnermann
, A.
, Chichkov
, B. N.
, Wellegehausen
, B.
, and Welling
, H.
, 1997
, “Ablation of Metals by Ultrashort Laser Pulses
,” J. Opt. Soc. Am. B
, 14
(10
), p. 2716
. 16.
Etsion
, I.
, 2005
, “State of the Art in Laser Surface Texturing
,” ASME J. Tribol.
, 127
(1
), pp. 248
–253
. 17.
Kapłonek
, W.
, and Nadolny
, K.
, 2015
, “Laser Methods Based on an Analysis of Scattered Light for Automated, in-Process Inspection of Machined Surfaces: A Review
,” Optik
, 126
(20
), pp. 2764
–2770
. 18.
Förster
, R.
, 2004
, “Untersuchung des Potentials Elektrochemischer Senkbearbeitung mit Oszillierender Werkzeugelektrode für Strukturierungsaufgaben der Mikrosystemtechnik
,” Dissertation
, Albert-Ludwigs-Universität Freiburg im Breisgau
, Freiburg
.19.
Rebschläger
, A.
, 2015
, “Recording, Processing and Use of Material-Specific Data in Pulse Electrochemical Machining
,” Dissertation
, Universität des Saarlandes
, Saarbrücken
.20.
Steuer
, P.
, 2016
, “Gepulste Elektrochemische Bearbeitung von Kupferelektroden und Deren Einsatz zur Funkenerosiven Strukturierung von Hartmetall
,” Dissertation
, Universität des Saarlandes
, Saarbrücken
.Copyright © 2024 by ASME
You do not currently have access to this content.