Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Use of laser powder bed fusion (LPBF) stainless steel in corrosive environments is attractive due to material's high corrosion resistance and fine feature resolution, which is advantageous for fluidic applications. For this implementation to be optimized, LPBF stainless steel parts must have reduced susceptibility to stress corrosion cracking (SCC), a failure mode that is of high risk for stainless steels. Laser shock peening (LSP) surface processing has been used to improve SCC resistance in wrought metals and has also been used to improve other material properties of additively manufactured metals. However, LSP has yet to be investigated for the improvement of SCC behavior in LPBF stainless steel. This article demonstrates that not only does LSP improve time to crack initiation of LPBF 316L stainless steel in SCC testing but also improves SCC behavior differently when applied to different surfaces of the build. To explain these results, residual stress, texture, dislocation distribution, hardness, microstructure, and fracture surfaces are investigated, linking different hydrogen embrittlement mechanisms to each of the two build orientations as well as the peened and un-peened conditions. These results are supported by matching the observed crack morphologies to those simulated with dynamic crack modeling, thereby demonstrating the impact of residual stress and plastic versus brittle failure upon the observed outcome.

References

1.
Patel
,
S.
,
2021
, “
Nuclear First: 3D-Printed Safety-Related Components Installed at Browns Ferry
,” Power: News & Technology for the Global Energy Industry, Houston, TX.
2.
Anderson
,
S. A.
, and
Uriarte
,
C.
,
2015
,
"Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components," Lockheed Martin, Uniondale, NY
.
3.
Lou
,
X.
,
Song
,
M.
,
Emigh
,
P. W.
,
Othon
,
M. A.
, and
Andreson
,
P. L.
,
2017
, “
On the Stress Corrosion Crack Growth Behaviour in High Temperature Water of 316L Stainless Steel made by Laser Powder Bed Fusion Additive Manufacturing
,”
Corros. Sci.
,
128
, pp.
140
153
.
4.
Mercelis
,
P.
, and
Kruth
,
J.-P.
,
2006
, “
Residual Stresses in Selective Laser Sintering
,”
Rapid Prototyp.
,
12
(
5
), pp.
254
265
.
5.
Macatangay
,
D. A.
,
Thomas
,
S.
,
Birbilis
,
N.
, and
Kelly
,
R. G.
,
2018
, “
Unexpected Interface Corrosion and Sensitization Susceptibility in Additively Manufactured Austenitic Stainless Steel
,”
Corros. Commun.
,
74
(
2
), pp.
153
157
.
6.
Cruz
,
V.
,
Chao
,
Q.
,
Birbilis
,
N.
,
Fabijanic
,
D.
,
Hodgson
,
P. D.
, and
Thomas
,
S.
,
2020
, “
Electrochemical Studies on the Effect of Residual Stress on the Corrosion of 316L Manufactured by Selective Laser Melting
,”
Corros. Sci.
,
164
, p.
108314
.
7.
Yang
,
X.
,
Tang
,
F.
,
Hao
,
X.
, and
Li
,
Z.
,
2021
, “
Oxide Evolution During the Solidification of 316L Stainless Steel from Additive Manufacturing Powders with Different Oxygen Contents
,”
Metall. Mater. Trans. B.
,
52
, pp.
2253
2253
.
8.
Bertsch
,
K. M.
,
Nagao
,
A.
,
Rankouhi
,
B.
,
Kuehl
,
B
, and
Thoma
,
D. J.
,
2021
, “
Hydrogen Embrittlement of Additively Manufactured Austenitic Stainless Steel 316L
,”
Corros. Sci.
,
192
, p.
109790
.
9.
Miller
,
J. T.
,
Martin
,
J. H.
, and
Cudjoe
,
E.
,
2021
, “
Comparison of the Effects of a Sulfuric Acid Environment on Traditionally Manufactured and Additive Manufactured Stainless Steel 316L Alloy
,”
Addit. Manuf.
,
23
, pp.
272
282
.
10.
Brown
,
B. F.
,
1976
, “
Stress Corrosion Cracking Control Measures
,” U.S. Dept. of Commerce, National Bureau of Standards: for Sale by the Supt. of Docs, U.S. Govt. Print. Off, Washington, DC.
11.
Karasz
,
E. K.
,
Taylor
,
J.
,
Autenrieth
,
D. M.
,
Reu
,
P.
,
Johnson
,
K.
,
Melia
,
M.
, and
Noell
,
P.
,
2022
, “
Measuring the Residual Stress and Stress Corrosion Cracking Susceptibility of Additively Manufactured 316L by ASTM G36-94
,”
Corros.
,
78
(
1
), pp.
3
12
.
12.
Peng
,
X.
,
Kong
,
L.
,
Fuh
,
J. Y. H.
, and
Wang
,
H.
,
2021
, “
A Review of Post-Processing Technologies in Additive Manufacturing
,”
J. Manuf. Mater. Process.
,
5
(
8
), p.
38
.
13.
Sealy
,
M.
,
Madireddy
,
G.
,
Williams
,
R.
,
Rao
,
P.
, and
Toursangsaraki
,
M.
,
2018
, “
Hybrid Processes in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
060801
.
14.
Brandal
,
G.
, and
Yao
,
Y. L.
,
2017
, “
Material Influence on Mitigation of Stress Corrosion Cracking via Laser Shock Peening
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011002
.
15.
Peyre
,
P.
,
Scherpereel
,
X.
,
Berthe
,
L.
,
Carboni
,
C.
,
Fabbro
,
R.
,
Beranger
,
G.
, and
Lemaitre
,
C.
,
2000
, “
Surface Modifications Induced in 316L Steel by Laser Peening and Shot-Peening. Influence on Pitting Corrosion Resistance
,”
Mater. Sci. Eng. A.
,
280
(
2
), pp.
294
302
.
16.
Brandal
,
G.
, and
Yao
,
Y. L.
,
2017
, “
Laser Shock Peening for Suppression of Hydrogen-Induced Martensitic Transformation in Stress Corrosion Cracking
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081015
.
17.
Krawiec
,
H.
,
Vignal
,
V.
,
Amar
,
H.
, and
Peyre
,
P.
,
2011
, “
Local Electrochemical Impedance Spectroscopy Study of the Influence of Ageing in Air and Laser Shock Processing on the Micro-Electrochemical Behaviour of AA2050-T8 Aluminium Alloy
,”
Electrochemica Acta
,
56
(
26
), pp.
9581
9587
.
18.
Kalentics
,
N.
,
Boillat
,
E.
,
Peyre
,
P.
,
Gorny
,
C.
,
Kenel
,
C.
,
Leinenbach
,
C.
,
Jhabvala
,
J.
, and
Logé
,
R. E.
,
2017
, “
3D Laser Shock Peening – A New Method for the 3D Control of Residual Stresses in Selective Laser Melting
,”
Mater. Des.
,
130
, pp.
350
356
.
19.
Luo
,
S.
,
He
,
W.
,
Chen
,
K.
,
Nie
,
X.
,
Zhuo
,
L.
, and
Li
,
Y.
,
2018
, “
Regain the Fatigue Strength of Laser Additive Manufactured Ti Alloy via Laser Shock Peening
,”
J. Alloys Compd.
,
750
, pp.
626
635
.
20.
Kalentics
,
N.
,
Huang
,
K.
,
Ortega Varela de Seijas
,
M.
,
Burn
,
A.
,
Romano
,
V.
, and
Logé
,
R. E.
,
2019
, “
Laser Shock Peening: A Promising Tool for Tailoring Metallic Microstructures in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
266
, pp.
612
618
.
21.
Over
,
V.
,
Donovan
,
J.
, and
Yao
,
Y. L.
,
2023
, “
The Effect of Laser Shock Peening on Back Stress of Additively Manufactured Stainless Steel Parts
,”
ASME J. Manuf. Sci. Eng.
,
145
(
4
), p.
041005
.
22.
Yao
,
J. Y.
,
Venezuela
,
J.
,
Aterns
,
A.
, and
Ming-Xing
,
Z.
,
2023
, “
Recent Research Progress in Hydrogen Embrittlement of Additively Manufactured Metals—A Review
,”
Curr. Opin. Solid State Mater. Sci.
,
27
(
5
), p.
101106
.
23.
Chen
,
W.
,
Voisin
,
T.
,
Zhang
,
Y.
,
Florien
,
J.
,
Spadaccini
,
C. M.
,
McDowell
,
D. L.
,
Zhu
,
T.
, and
Wang
,
Y. M.
,
2019
, “
Microscale Residual Stresses in Additively Manufactured Stainless Steel
,”
Nat. Commun.
,
10
, p.
4338
.
24.
Silverstein
,
R.
, and
Eliezer
,
D.
,
2018
, “
Hydrogen Trapping in 3D-Printed (Additive Manufactured) Ti-6Al-4V
,”
Mater. Charact.
,
144
, pp.
297
304
.
25.
Cruz
,
V.
,
Qiu
,
Y.
,
Birbilis
,
N.
, and
Thomas
,
S.
,
2022
, “
Stress Corrosion Cracking of 316L Manufactured by Laser Powder Bed Fusion in 6% Ferric Chloride Solution
,”
Corros. Sci.
,
207
, p.
110535
.
26.
Riemer
,
A.
,
Leuders
,
S.
,
Thöne
,
M.
,
Richard
,
H. A.
,
Tröster
,
T.
, and
Niendorf
,
T.
,
2014
, “
On the Fatigue Crack Growth Behavior in 316L Stainless Steel Manufactured by Selective Laser Melting
,”
Eng. Fract. Mech.
,
102
, pp.
15
25
.
27.
Shoemaker
,
T. K.
,
Harris
,
Z. D.
, and
Burns
,
J. T.
,
2022
, “
Comparing Stress Corrosion Cracking Behavior of Additively Manufactured and Wrought 17-4H Stainless Steel
,”
Corrosion
,
78
(
6
), pp.
528
546
.
28.
Toribio
,
J.
, and
Elices
,
M.
,
1991
, “
Influence of Residual Stresses on Hydrogen Embrittlement Susceptibility of Prestresing Steels
,”
Int. J. Solids Struct.
,
28
(
6
), pp.
791
803
.
29.
Li
,
C.
,
Liu
,
Z. Y.
,
Fang
,
X. Y.
, and
Guo
,
Y. B.
,
2018
, “
Residual Stress in Metal Additive Manufacturing
,”
Procedia CIRP
,
71
, pp.
348
353
.
30.
Clauer
,
A. H.
,
1996
,
Conference on Surface Performance of Titanium
,
Cincinnati, OH
,
Oct. 7
.
31.
Yoo
,
Y.-R.
,
Choi
,
S.-H.
, and
Kim
,
Y.-S.
,
2023
, “
Effect of Laser Shock Peening on the Stress Corrosion Cracking of 304L Stainless Steel
,”
Metals
,
13
(
3
), p.
516
.
32.
Mordyuk
,
B. N.
,
Milman
,
Y. V.
,
Iefimov
,
M. O.
,
Prokopenko
,
G. I.
,
Silberschmidt
,
V. V.
,
Danylenko
,
M. I.
, and
Kotko
,
A. V.
,
2008
, “
Characterization of Ultrasonically Peened and Laser-Shock Peened Surface Layers of AISI 321 Stainless Steel
,”
Surf. Coat. Technol.
,
202
(
19
), pp.
4875
4883
.
33.
Zhou
,
L.
,
He
,
W.
,
Luo
,
S.
,
Long
,
C.
,
Wang
,
C.
,
Nie
,
X.
,
He
,
G.
,
Shen
,
X.
, and
Li
,
Y.
,
2016
, “
Laser Shock Peening Induced Surface Nanocrystallization and Martensite Transformation in Austenitic Stainless Steel
,”
Surf. Coat. Technol.
,
655
, pp.
66
70
.
34.
Guo
,
W.
,
Sun
,
R.
,
Song
,
B.
,
Zhu
,
Y.
,
Li
,
F.
,
Che
,
Z.
,
Li
,
B.
,
Guo
,
C.
,
Liu
,
L.
, and
Peng
,
P.
,
2018
, “
Laser Shock Peening of Laser Additive Manufactured Ti6Al4V Titanium Alloy
,”
Surf. Coat. Technol.
,
349
, pp.
503
510
.
35.
Sun
,
R.
,
Li
,
L.
,
Zhu
,
Y.
,
Guo
,
W.
,
Peng
,
P.
,
Cong
,
B.
,
Sun
,
J.
, et al
,
2018
, “
Microstructure, Residual Stress and Tensile Properties Control of Wire-Arc Additive Manufactured 2319 Aluminum Alloy With Laser Shock Peening
,”
J. Alloys Compd.
,
747
, pp.
255
265
.
36.
Wang
,
Y.
,
Kysar
,
J. W.
,
Vukelic
,
S.
, and
Yao
,
Y. L.
,
2009
, “
Spatially Resolved Characterization of Geometrically Necessary Dislocation Dependant Deformation in Microscale Laser Shock Peening
,”
ASME J. Manuf. Sci. Eng.
,
131
(
4
), p.
041014
.
37.
Gujba
,
A. K.
, and
Medraj
,
M.
,
2014
, “
Laser Peening Process and Its Impact on Materials Properties in Comparison With Shot Peening and Ultrasonic Impact Peening
,”
Materials
,
7
(
12
), pp.
7925
7974
.
38.
Sanchez
,
A. G.
,
You
,
C.
,
Leering
,
M.
,
Glaser
,
D.
,
Furfari
,
D.
,
Fitzpatrick
,
M. E.
,
Wharton
,
J.
, and
Reed
,
P. A. S.
,
2021
, “
Effects of Laser Shock Peening on the Mechanisms of Fatigue Short Crack Initiation and Propagation of AA7075-T651
,”
Int. J. Fatigue
,
143
, p.
106025
.
39.
Lynch
,
S. P.
,
2007
, “
Progress Towards Understanding Mechanisms of Hydrogen Embrittlement and Stress Corrosion Cracking
,”
NACE International Corrosion Conference & Expo
,
Nashville, TN
,
March 11
.
40.
Rubio-González
,
C.
,
Ocaña
,
J. L.
,
Gomez-Rosas
,
G.
,
Molpeceres
,
C.
,
Paredes
,
M.
,
Banderas
,
A.
,
Porro
,
J.
, and
Morales
,
M.
,
2004
, “
Effect of Laser Shock Processing on Fatigue Crack Growth and Fracture Toughness of 6061-T6 Aluminum Alloy
,”
Mater. Sci. Eng. A
,
386
(
1–2
), pp.
291
295
.
41.
Bergant
,
Z.
,
Trdan
,
U.
, and
Grum
,
J.
,
2016
, “
Effects of Laser Shock Processing on High Cycle Fatigue Crack Growth Rate and Fracture Toughness of Aluminium Alloy 6082-T651
,”
Int. J. Fatigue
,
87
, pp.
444
455
.
42.
Sun
,
Y.
,
Edwards
,
M. G.
,
Chen
,
B.
, and
Li
,
C.
,
2021
, “
A State-of-the-Art Review of Crack Branching
,”
Eng. Fract. Mech.
,
257
, p.
108036
.
43.
Sharon
,
E.
,
Gross
,
S. P.
, and
Fineberg
,
J.
,
1995
, “
Local Crack Branching as a Mechanism for Instability in Dynamic Fracture
,”
Phys. Rev. Lett.
,
74
(
25
), pp.
5096
5099
.
44.
Molnár
,
G.
,
Gravouil
,
A.
,
Seghir
,
R.
, and
Réthoré
,
J.
,
2020
, “
An Open-Source Abaqus Implementation of the Phase-Field Method to Study the Effect of Plasticity on the Instantaneous Fracture Toughness in Dynamic Crack Propagation
,”
Comput. Methods Appl. Mech. Eng.
,
365
, p.
113004
.
45.
Miehe
,
C.
,
Welshinger
,
F.
, and
Hofacker
,
M.
,
2010
, “
Thermodynamically Consistent Phase-Field Models of Fracture: Variational Principles and Multi-Field FE Implementations
,”
Internat. J. Numer. Methods Eng.
,
83
(
10
), pp.
1275
1311
.
46.
Huang
,
S.
, and
Hui
,
H.
,
2022
, “
Predictive Environmental Hydrogen Embrittlement on Fracture Toughness of Commercial Ferritic Steels With Hydrogen-Modified Fracture Strain Model
,”
Int. J. Hydrog. Energy
,
47
(
19
), pp.
10777
11087
.
47.
Li
,
Y.
, and
Zhang
,
K.
,
2022
, “
Analysis of Hydrogen-Assisted Brittle Fracture Using Phase-Field Damage Modelling Considering Hydrogen Enhanced Decohesion Mechanism
,”
Metals
,
12
(
6
), p.
1032
.
48.
Over
,
V.
, and
Yao
,
Y. L.
,
2022
, “
Laser Shock Peening Induced Back Stress Mitigation in Rolled Stainless Steel
,”
ASME J. Manuf. Sci. Eng.
,
144
(
6
), p.
061010
.
49.
Mukherjee
,
M.
,
2019
, “
Effect of Build Geometry and Orientation on Microstructure and Properties of Additively Manufactured 316L Stainless Steel by Laser Metal Deposition
,”
Materialia.
,
7
, p.
100359
.
50.
Flanagan
,
W. F.
,
Bastias
,
P.
, and
Lichter
,
B. D.
,
1991
, “
A Theory of Transgranular Stress-Corrosion Cracking
,”
Acta Metall. Mater.
,
39
(
4
), pp.
695
705
.
51.
Paul
,
S.
,
Liu
,
J.
,
Strayer
,
S. T.
,
Zhao
,
Y.
,
Sridar
,
S.
,
Klecka
,
M. A.
,
Xiong
,
W.
, and
To
,
C. A.
,
2017
, “
A Discrete Dendrite Dynamics Model for Epitaxial Columnar Grain Growth in Metal Additive Manufacturing With Application to Inconel
,”
Addit. Manuf.
,
36
, p.
101611
.
52.
de Sonis
,
E.
,
Depinoy
,
S.
,
Giroux
,
P.-F.
,
Maskrot
,
H.
,
Wident
,
P.
,
Hercher
,
O.
,
Villaret
,
F.
, and
Grougues-Lorenzon
,
A.-F.
,
2023
, “
Microstructure–Toughness Relationships in 316L Stainless Steel Produced by Laser Powder Bed Fusion
,”
Mater. Sci. Eng. A
,
877
, p.
145179
.
You do not currently have access to this content.