Abstract

This study utilizes a technology known as 3D laser foil printing (LFP) to create precise structures by layering metal foils using laser welding. Metal foils have the advantages of rapid cooling and efficient heat conduction, allowing for the formation of fine-grained structures. However, when dealing with materials like aluminum alloys in laser processes, defects can arise as a result of their high reflectivity. To address this challenge, laser circular oscillation welding (LCOW) is applied to the LFP process. LCOW's circular motions with higher scanning frequencies widen the keyholes and reduce some defects such as spattering, bubble formation, and microcracks. Simulation predictions with an error margin of approximately 10% in comparison to experimental results demonstrate the reliability of the model. Furthermore, the study integrates circular packing design with artificial neural networks to create comprehensive processing maps tailored to different criteria for extracting optimal welding parameters. As a result, for the optimized processing parameters screened using the above systematic process, no cracks were observed on the upper surface of the 3D LFP parts produced with a laser power of 800 W and a scanning speed of 550 mm/s, and only 0.12% porosity was observed from the cross section of the sample. Future research will focus on incorporating simulation results to model microstructures more precisely and continually refining LCOW parameters as new materials and technologies emerge, ensuring the ongoing enhancement of weld quality in the 3D LFP process.

References

1.
Hung
,
C.-H.
,
Turk
,
T.
,
Sehhat
,
M. H.
, and
Leu
,
M. C.
,
2022
, “
Development and Experimental Study of an Automated Laser-Foil-Printing Additive Manufacturing System
,”
Rapid Prototyp. J.
,
28
(
6
), pp.
1013
1022
.
2.
Hung
,
C.-H.
,
Chen
,
W.-T.
,
Sehhat
,
M. H.
, and
Leu
,
M. C.
,
2021
, “
The Effect of Laser Welding Modes on Mechanical Properties and Microstructure of 304L Stainless Steel Parts Fabricated by Laser-Foil-Printing Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
112
(
3–4
), pp.
867
877
.
3.
Chen
,
C.
,
Shen
,
Y.
, and
Tsai
,
H.-L.
,
2017
, “
A Foil-Based Additive Manufacturing Technology for Metal Parts
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
024501
.
4.
Hung
,
C.-H.
,
Shen
,
Y.
,
Leu
,
M.-C.
, and
Tsai
,
H.-L.
,
2017
, “
Mechanical Properties of 304L Parts Made by Laser-Foil-Printing Technology
,”
Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
7–9 Aug 2017
,
University of Texas at Austin
, pp.
1833
1845
.
5.
Hung
,
C.-H.
,
Sutton
,
A.
,
Li
,
Y.
,
Shen
,
Y.
,
Tsai
,
H.-L.
, and
Leu
,
M. C.
,
2019
, “
Enhanced Mechanical Properties for 304L Stainless Steel Parts Fabricated by Laser-Foil-Printing Additive Manufacturing
,”
J. Manuf. Processes
,
45
, pp.
438
446
.
6.
Hung
,
C.-H.
,
Li
,
Y.
,
Sutton
,
A.
,
Chen
,
W. T.
,
Gong
,
X.
,
Pan
,
H.
,
Tsai
,
H. L.
, and
Leu
,
M. C.
,
2020
, “
Aluminum Parts Fabricated by Laser-Foil-Printing Additive Manufacturing: Processing, Microstructure, and Mechanical Properties
,”
Materials
,
13
(
2
), p.
414
.
7.
Kawahito
,
Y.
,
Matsumoto
,
N.
,
Abe
,
Y.
, and
Katayama
,
S.
,
2012
, “
Laser Absorption of Aluminium Alloy in High Brightness and High Power Fibre Laser Welding
,”
Weld. Int.
,
26
(
4
), pp.
275
281
.
8.
Sheikhi
,
M.
,
Ghaini
,
F. M.
, and
Assadi
,
H.
,
2015
, “
Prediction of Solidification Cracking in Pulsed Laser Welding of 2024 Aluminum Alloy
,”
Acta Mater.
,
82
, pp.
491
502
.
9.
Ready
,
J. F.
,
1997
,
Industrial Applications of Lasers
,
Elsevier
,
New York
.
10.
Wang
,
H.-Y.
,
Lo
,
Y.-L.
,
Tran
,
H.-C.
,
Raza
,
M. M.
, and
Le
,
T.-N.
,
2021
, “
Systematic Approach for Reducing Micro-Crack Formation in Inconel 713LC Components Fabricated by Laser Powder Bed Fusion
,”
Rapid Prototyp. J.
,
27
(
8
), pp.
1548
1561
.
11.
Chen
,
H.-H.
,
Lo
,
Y.-L.
,
Hsu
,
Y.-Y.
, and
Lai
,
K.-L.
,
2023
, “
Systematic Optimization of L-PBF Processing Parameters for Al Alloy 6061 With YSZ Nanoparticles
,”
Opt. Laser Technol.
,
167
, p.
109676
.
12.
Kang
,
M.
,
Cheon
,
J.
,
Kam
,
D. H.
, and
Kim
,
C.
,
2020
, “
The Hot Cracking Susceptibility Subjected the Laser Beam Oscillation Welding on 6XXX Aluminum Alloy With a Partial Penetration Joint
,”
J. Laser Appl.
,
33
(
1)
.
13.
Han
,
J.
,
Shi
,
Y.
,
Guo
,
J.-C.
,
Volodymyr
,
K.
,
Le
,
W.-Y.
, and
Dai
,
F.-X.
,
2023
, “
Porosity Inhibition of Aluminum Alloy by Power-Modulated Laser Welding and Mechanism Analysis
,”
J. Manuf. Processes
,
102
, pp.
827
838
.
14.
Pamarthi
,
V. V.
,
Sun
,
T.
,
Das
,
A.
, and
Franciosa
,
P.
,
2023
, “
Tailoring the Weld Microstructure to Prevent Solidification Cracking in Remote Laser Welding of AA6005 Aluminium Alloys Using Adjustable Ringmode Beam
,”
J. Mater. Res. Technol.
,
25
, pp.
7154
7168
.
15.
Wang
,
L.
,
Gao
,
M.
,
Zhang
,
C.
, and
Zeng
,
X.
,
2016
, “
Effect of Beam Oscillating Pattern on Weld Characterization of Laser Welding of AA6061-T6 Aluminum Alloy
,”
Mater. Des.
,
108
, pp.
707
717
.
16.
Cen
,
L.
,
Du
,
W.
,
Gong
,
M.
,
Lu
,
Y.
,
Zhang
,
C.
, and
Gao
,
M.
,
2022
, “
Effect of High-Frequency Beam Oscillation on Microstructures and Cracks in Laser Cladding of Al-Cu-Mg Alloys
,”
Surf. Coat. Technol.
,
447
, p.
128852
.
17.
Zhang
,
C.
,
Yu
,
Y.
,
Chen
,
C.
,
Zeng
,
X.
, and
Gao
,
M.
,
2020
, “
Suppressing Porosity of a Laser Keyhole Welded Al-6Mg Alloy via Beam Oscillation
,”
J. Mater. Process. Technol.
,
278
, p.
116382
.
18.
Ke
,
W.
,
Bu
,
X.
,
Oliveira
,
J.
,
Xu
,
W.
,
Wang
,
Z.
, and
Zeng
,
Z.
,
2021
, “
Modeling and Numerical Study of Keyhole-Induced Porosity Formation in Laser Beam Oscillating Welding of 5A06 Aluminum Alloy
,”
Opt. Laser Technol.
,
133
, p.
106540
.
19.
Tao
,
W.
, and
Yang
,
S.
,
2020
, “
Weld Zone Porosity Elimination Process in Remote Laser Welding of AA5182-O Aluminum Alloy Lap-Joints
,”
J. Mater. Process. Technol.
,
286
, p.
116826
.
20.
Fetzer
,
F.
,
Sommer
,
M.
,
Weber
,
R.
,
Weberpals
,
J.-P.
, and
Graf
,
T.
,
2018
, “
Reduction of Pores by Means of Laser Beam Oscillation During Remote Welding of AlMgSi
,”
Opt. Lasers Eng.
,
108
, pp.
68
77
.
21.
Li
,
S.
,
Mi
,
G.
, and
Wang
,
C.
,
2020
, “
A Study on Laser Beam Oscillating Welding Characteristics for the 5083 Aluminum Alloy: Morphology, Microstructure and Mechanical Properties
,”
J. Manuf. Processes
,
53
, pp.
12
20
.
22.
Kang
,
M.
,
Han
,
H. N.
, and
Kim
,
C.
,
2018
, “
Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam
,”
Materials
,
11
(
4
), p.
648
.
23.
Hagenlocher
,
C.
,
Sommer
,
M.
,
Fetzer
,
F.
,
Weber
,
R.
, and
Graf
,
T.
,
2018
, “
Optimization of the Solidification Conditions by Means of Beam Oscillation During Laser Beam Welding of Aluminum
,”
Mater. Des.
,
160
, pp.
1178
1185
.
24.
Cheng
,
H.
,
Zhou
,
L.
,
Sun
,
J.
,
Wen
,
S.
,
Wang
,
Y.
,
Chang
,
B.
, and
Du
,
D.
,
2021
, “
Processing Modes in Laser Beam Oscillating Welding of Al6Cu Alloy
,”
J. Manuf. Processes
,
68
, pp.
1261
1270
.
25.
Wu
,
M.
,
Luo
,
Z.
,
Li
,
Y.
,
Liu
,
L.
, and
Ao
,
S.
,
2023
, “
Effect of Oscillation Modes on Weld Formation and Pores of Laser Welding in the Horizontal Position
,”
Opt. Laser Technol.
,
158
, p.
108801
.
26.
Tran
,
H.-C.
, and
Lo
,
Y.-L.
,
2019
, “
Systematic Approach for Determining Optimal Processing Parameters to Produce Parts With High Density in Selective Laser Melting Process
,”
Int. J. Adv. Manuf. Technol.
,
105
, pp.
4443
4460
.
27.
Huang
,
T.-C.
,
Hung
,
C.-H.
, and
Lin
,
Y.
,
2024
, “
Residual Stress Reduction in Ti-6Al-4V Parts Fabricated by Laser-Foil-Printing Process
,”
Opt. Laser Technol.
,
177
, p.
111157
.
28.
Dimatteo
,
V.
,
Ascari
,
A.
, and
Fortunato
,
A.
,
2019
, “
Continuous Laser Welding With Spatial Beam Oscillation of Dissimilar Thin Sheet Materials (Al-Cu and Cu-Al): Process Optimization and Characterization
,”
J. Manuf. Processes
,
44
, pp.
158
165
.
29.
Lin
,
R.
,
Wang
,
H.-P.
,
Lu
,
F.
,
Solomon
,
J.
, and
Carlson
,
B. E.
,
2017
, “
Numerical Study of Keyhole Dynamics and Keyhole-Induced Porosity Formation in Remote Laser Welding of Al Alloys
,”
Int. J. Heat Mass Transfer
,
108
, pp.
244
256
.
30.
Cho
,
W.-I.
,
Na
,
S.-J.
,
Thomy
,
C.
, and
Vollertsen
,
F.
,
2012
, “
Numerical Simulation of Molten Pool Dynamics in High Power Disk Laser Welding
,”
J. Mater. Process. Technol.
,
212
(
1
), pp.
262
275
.
31.
Cho
,
J.-H.
, and
Na
,
S.-J.
,
2006
, “
Implementation of Real-Time Multiple Reflection and Fresnel Absorption of Laser Beam in Keyhole
,”
J. Phys. D: Appl. Phys.
,
39
(
24
), pp.
5372
5378
.
32.
Wu
,
D.
,
Hua
,
X.
,
Li
,
F.
, and
Huang
,
L.
,
2017
, “
Understanding of Spatter Formation in Fiber Laser Welding of 5083 Aluminum Alloy
,”
Int. J. Heat Mass Transfer
,
113
, pp.
730
740
.
33.
Fang
,
K.-T.
,
Li
,
R.
, and
Sudjianto
,
A.
,
2005
,
Design and Modeling for Computer Experiments
,
CRC Press
,
New York
.
34.
Wang
,
Y.-X.
,
Hung
,
C.-H.
,
Pommerenke
,
H.
,
Wu
,
S.-H.
, and
Liu
,
T.-Y.
,
2024
, “
Fabrication of Crack-Free Aluminum Alloy 6061 Parts Using Laser Foil Printing Process
,”
Rapid Prototyp. J.
,
30
(
4
), pp.
722
732
.
You do not currently have access to this content.