Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In metal cutting processes, accurately determining the shear angle is essential, as it governs chip formation and cutting force generation. Despite extensive research conducted on this topic, the accurate prediction of the shear angle remains a subject of ongoing investigation. This paper presents a new analytical model for predicting the shear angle, taking into account the direction difference between the shear stress at the boundary of the primary shear zone and the maximum shear stress. The constitutive property of the workpiece material with respect to the strain, strain rate, and temperature is considered in predicting the shear angle. The results show that the solution for the shear angle is not unique for a given rake and friction angle, and is highly dependent on the flow stress response of the workpiece material. Orthogonal cutting experiments were conducted on steel and aluminum alloys under various uncut chip thicknesses, cutting speeds, and tool rake angles to characterize the chip thickness and shear angle. Based on a comparison between model predictions, experimental results, and data from the literature for various workpiece materials and cutting conditions, it is shown that the proposed model results in an improved prediction for shear angle by considering the stress transformation within the primary shear zone.

References

1.
Wang
,
B.
,
Liu
,
Z.
,
Cai
,
Y.
,
Luo
,
X.
,
Ma
,
H.
,
Song
,
Q.
, and
Xiong
,
Z.
,
2021
, “
Advancements in Material Removal Mechanism and Surface Integrity of High Speed Metal Cutting: A Review
,”
Int. J. Mach. Tools Manuf.
,
166
, p.
103744
.
2.
Attia
,
H.
,
Sadek
,
A.
,
Altintas
,
Y.
,
Matsubara
,
A.
,
Umbrello
,
D.
,
Wegener
,
K.
,
Eisseler
,
R.
,
Ducobu
,
F.
, and
Ghadbeigi
,
H.
,
2024
, “
Physics Based Models for Characterization of Machining Performance—A Critical Review
,”
CIRP J. Manuf. Sci. Technol.
,
51
, pp.
161
189
.
3.
Li
,
L.
,
Chen
,
H.
,
Liao
,
Z.
,
Yang
,
Y.
, and
Axinte
,
D.
,
2023
, “
Investigation of the Grain Deformation to Orthogonal Cutting Process of the Textured Alloy 718 Fabricated by Laser Powder bed Fusion
,”
Int. J. Mach. Tools Manuf.
,
190
, p.
104050
.
4.
Melkote
,
S.
,
Liang
,
S.
,
Özel
,
T.
,
Jawahir
,
I. S.
,
Stephenson
,
D. A.
, and
Wang
,
B.
,
2022
, “
100th Anniversary Issue of the Manufacturing Engineering Division PaperA Review of Advances in Modeling of Conventional Machining Processes: From Merchant to the Present
,”
ASME J. Manuf. Sci. Eng.
,
144
(
11
), p.
110801
.
5.
Jawahir
,
I. S.
,
Schoop
,
J.
,
Kaynak
,
Y.
,
Balaji
,
A. K.
,
Ghosh
,
R.
, and
Lu
,
T.
,
2020
, “
Progress Toward Modeling and Optimization of Sustainable Machining Processes
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p. 110811.
6.
Zeng
,
H.
,
Yan
,
R.
,
Hu
,
T.
,
Du
,
P.
,
Wang
,
W.
, and
Peng
,
F.
,
2019
, “
Analytical Modeling of White Layer Formation in Orthogonal Cutting of AerMet100 Steel Based on Phase Transformation Mechanism
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
064502
.
7.
Shi
,
B.
,
Attia
,
H.
, and
Tounsi
,
N.
,
2010
, “
Identification of Material Constitutive Laws for Machining—Part I: An Analytical Model Describing the Stress, Strain, Strain Rate, and Temperature Fields in the Primary Shear Zone in Orthogonal Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
051008
.
8.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
(
5
), pp.
267
275
.
9.
Merchant
,
M. E.
,
1944
, “
Basic Mechanics of the Metal-Cutting Process
,”
ASME J. Appl. Mech.
,
11
(
3
), pp.
A168
A175
.
10.
Zorev
,
N. N.
,
1966
,
Metal Cutting Mechanics
,
Pergamon Press
,
Oxford
.
11.
Lee
,
E. H.
, and
Shaffer
,
B. W.
,
1951
, “
The Theory of Plasticity Applied to a Problem of Machining
,”
ASME J. Appl. Mech.
,
18
(
4
), pp.
405
413
.
12.
Oxley
,
P. L. B.
,
1961
, “
A Strain-Hardening Solution for the “Shear Angle” in Orthogonal Metal Cutting
,”
Int. J. Mech. Sci.
,
3
(
1–2
), pp.
68
79
.
13.
Oxley
,
P. L. B.
, and
Welsh
,
M. J. M.
,
1964
,
Calculating the Shear Angle in Orthogonal Metal Cutting From Fundamental Stress-Strain-Strain Rate Properties of the Work Material
. http://dspace.lib.cranfield.ac.uk/handle/1826/12577 (accessed August 28, 2024).
14.
Krystof
,
J.
,
1939
,
Berichte Uber Betriebswissenschaftliche Arbeiten, Bd
,
VDI Verlag
,
Berlin
.
15.
Altintas
,
Y.
,
2001
, “
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,”
ASME Appl. Mech. Rev.
,
54
(
5
), pp.
1
19
.
16.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. II. Plasticity Conditions in Orthogonal Cutting
,”
J. Appl. Phys.
,
16
(
6
), pp.
318
324
.
17.
Oxley
,
P. L. B.
,
1989
,
The Mechanics of Machining: An Analytical Approach to Assessing Machinability
,
E. Horwood
,
Chichester
.
18.
Astakhov
,
V. P.
,
2005
, “
On the Inadequacy of the Single-Shear Plane Model of Chip Formation
,”
Int. J. Mech. Sci.
,
47
(
11
), pp.
1649
1672
.
19.
Kobayashi
,
S.
, and
Thomsen
,
E. G.
,
1962
, “
Metal-Cutting Analysis—II: New Parameters
,”
ASME J. Eng. Ind.
,
84
(
1
), pp.
71
79
.
20.
Hill
,
R.
,
1954
, “
The Mechanics of Machining: A new Approach
,”
J. Mech. Phys. Solids
,
3
(
1
), pp.
47
53
.
21.
Kudo
,
H.
,
1965
, “
Some new Slip-Line Solutions for two-Dimensional Steady-State Machining
,”
Int. J. Mech. Sci.
,
7
(
1
), pp.
43
55
.
22.
Dewhurst
,
P.
,
1978
, “
On the non-Uniqueness of the Machining Process
,”
Proc. R. Soc. London. A. Math. Phys. Sci.
,
360
(
1703
), pp.
587
610
.
23.
Collins
,
I. F.
,
1968
, “
The Algebraic-Geometry of Slip Line Fields with Applications to Boundary Value Problems
,”
Proc. R. Soc. London Ser., A
,
303
(
1474
), pp.
317
338
.
24.
Dewhurst
,
P.
, and
Collins
,
I. F.
,
1973
, “
A Matrix Technique for Constructing Slip-Line Field Solutions to a Class of Plane Strain Plasticity Problems
,”
Int. J. Numer. Methods Eng.
,
7
(
3
), pp.
357
378
.
25.
Fang
,
N.
,
Jawahir
,
I. S.
, and
Oxley
,
P. L. B.
,
2001
, “
A Universal Slip-Line Model With Non-Unique Solutions for Machining With Curled Chip Formation and a Restricted Contact Tool
,”
Int. J. Mech. Sci.
,
43
(
2
), pp.
557
580
.
26.
Johnson
,
W.
,
1962
, “
Some Slip-Line Fields for Swaging or Expanding, Indenting, Extruding and Machining for Tools With Curved Dies
,”
Int. J. Mech. Sci.
,
4
(
4
), pp.
323
347
.
27.
Usui
,
E.
, and
Hoshi
,
K.
,
1963
, “
Slip-Line Fields in Metal Machining Which Involve Centered Fans
,”
Proceedings of International Production Engineering Research Conference
,
Carnegie Institute of Technology, Pittsburgh, PA
,
Sept. 9–12
, pp.
61
71
.
28.
Palmer
,
W. B.
, and
Oxley
,
P. L. B.
,
1959
, “
Mechanics of Orthogonal Machining
,”
Proc. Inst. Mech. Eng.
,
173
(
1
), pp.
623
654
.
29.
Stevenson
,
M. G.
, and
Oxley
,
P. L. B.
,
1970
, “
An Experimental Investigation of the Influence of Strain-Rate and Temperature on the Flow Stress Properties of a Low Carbon Steel Using a Machining Test
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
741
754
.
30.
Oxley
,
P. L. B.
,
Hastings
,
W. F.
, and
Ford
,
H.
,
1997
, “
Predicting the Strain Rate in the Zone of Intense Shear in Which the Chip is Formed in Machining From the Dynamic Flow Stress Properties of the Work Material and the Cutting Conditions
,”
Proc. R. Soc. London. A. Math. Phys. Sci.
,
356
(
1686
), pp.
395
410
.
31.
Adibi-Sedeh
,
A. H.
,
Madhavan
,
V.
, and
Bahr
,
B.
,
2003
, “
Extension of Oxley’s Analysis of Machining to Use Different Material Models
,”
ASME J. Manuf. Sci. Eng.
,
125
(
4
), pp.
656
666
.
32.
Lalwani
,
D. I.
,
Mehta
,
N. K.
, and
Jain
,
P. K.
,
2009
, “
Extension of Oxley’s Predictive Machining Theory for Johnson and Cook Flow Stress Model
,”
J. Mater. Process. Technol.
,
209
(
12–13
), pp.
5305
5312
.
33.
Karandikar
,
J.
,
Chaudhuri
,
A.
,
No
,
T.
,
Smith
,
S.
, and
Schmitz
,
T.
,
2022
, “
Bayesian Optimization for Inverse Calibration of Expensive Computer Models: A Case Study for Johnson-Cook Model in Machining
,”
Manuf. Lett.
,
32
, pp.
32
38
.
34.
Seif
,
C. Y.
,
Hage
,
I. S.
, and
Hamade
,
R. F.
,
2020
, “
Incorporating Dual BCC/FCC Zerilli-Armstrong and Blue Brittleness Constitutive Material Models Into Oxley’s Machining Shear Zone Theory
,”
J. Manuf. Process.
,
50
, pp.
663
675
.
35.
Arrazola
,
P. J.
,
Özel
,
T.
,
Umbrello
,
D.
,
Davies
,
M.
, and
Jawahir
,
I. S.
,
2013
, “
Recent Advances in Modelling of Metal Machining Processes
,”
CIRP Ann.
,
62
(
2
), pp.
695
718
.
36.
Childs
,
T. H. C.
,
Arrazola
,
P.-J.
,
Aristimuno
,
P.
,
Garay
,
A.
, and
Sacristan
,
I.
,
2018
, “
Ti6Al4V Metal Cutting Chip Formation Experiments and Modelling Over a Wide Range of Cutting Speeds
,”
J. Mater. Process. Technol.
,
255
, pp.
898
913
.
37.
Wang
,
F.
,
Liu
,
Z. Y.
,
Guo
,
Y. B.
,
Zhao
,
J.
, and
Liu
,
Z. Q.
,
2017
, “
Efficient Multiscale Modeling and Validation of Residual Stress Field in Cutting
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091004
.
38.
Xi
,
Y.
,
Bermingham
,
M.
,
Wang
,
G.
, and
Dargusch
,
M.
,
2013
, “
Finite Element Modeling of Cutting Force and Chip Formation During Thermally Assisted Machining of Ti6Al4V Alloy
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061014
.
39.
Arrazola
,
P. J.
, and
Özel
,
T.
,
2010
, “
Investigations on the Effects of Friction Modeling in Finite Element Simulation of Machining
,”
Int. J. Mech. Sci.
,
52
(
1
), pp.
31
42
.
40.
Guo
,
Y. B.
, and
Liu
,
C. R.
,
2001
, “
Mechanical Properties of Hardened AISI 52100 Steel in Hard Machining Processes
,”
ASME J. Manuf. Sci. Eng.
,
124
(
1
), pp.
1
9
.
41.
Shi
,
B.
,
Attia
,
H.
, and
Tounsi
,
N.
,
2010
, “
Identification of Material Constitutive Laws for Machining—Part II: Generation of the Constitutive Data and Validation of the Constitutive Law
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
051009
.
42.
Chuzhoy
,
L.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
,
Beaudoin
,
A. J.
, and
Bammann
,
D. J.
,
2003
, “
Machining Simulation of Ductile Iron and Its Constituents, Part 1: Estimation of Material Model Parameters and Their Validation
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
181
191
.
43.
Chuzhoy
,
L.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2003
, “
Machining Simulation of Ductile Iron and its Constituents, Part 2: Numerical Simulation and Experimental Validation of Machining
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
192
201
.
44.
Samuel
,
J.
,
Jun
,
M. B. G.
,
Ozdoganlar
,
O. B.
,
Honegger
,
A.
,
Vogler
,
M.
, and
Kapoor
,
S. G.
,
2020
, “
Micro/Meso-Scale Mechanical Machining 2020: A Two-Decade State-of-the-Field Review
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p. 110809.
45.
Dirikolu
,
M. H.
,
Childs
,
T. H. C.
, and
Maekawa
,
K.
,
2001
, “
Finite Element Simulation of Chip Flow in Metal Machining
,”
Int. J. Mech. Sci.
,
43
(
11
), pp.
2699
2713
.
46.
Maurel-Pantel
,
A.
,
Fontaine
,
M.
,
Thibaud
,
S.
, and
Gelin
,
J. C.
,
2012
, “
3D FEM Simulations of Shoulder Milling Operations on a 304L Stainless Steel
,”
Simul. Modell. Practice Theory
,
22
, pp.
13
27
.
47.
Ding
,
H.
, and
Shin
,
Y. C.
,
2014
, “
Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Titanium
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041003
.
48.
Rinaldi
,
S.
,
Umbrello
,
D.
, and
Melkote
,
S. N.
,
2021
, “
Modelling the Effects of Twinning and Dislocation Induced Strengthening in Orthogonal Micro and Macro Cutting of Commercially Pure Titanium
,”
Int. J. Mech. Sci.
,
190
, p.
106045
.
49.
Liu
,
X.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Ehmann
,
K. F.
,
2005
, “
The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
666
678
.
50.
Bai
,
W.
,
Sun
,
R.
,
Roy
,
A.
, and
Silberschmidt
,
V. V.
,
2017
, “
Improved Analytical Prediction of Chip Formation in Orthogonal Cutting of Titanium Alloy Ti6Al4V
,”
Int. J. Mech. Sci.
,
133
, pp.
357
367
.
51.
Wang
,
Z.
,
Zhang
,
J.
,
Xu
,
Z.
,
Zhang
,
J.
,
Li
,
G.
,
Zhang
,
H.
,
Li
,
Z.
, et al
,
2020
, “
Crystal Anisotropy-Dependent Shear Angle Variation in Orthogonal Cutting of Single Crystalline Copper
,”
Precis. Eng.
,
63
, pp.
41
48
.
52.
Sun
,
Z.
,
Zhang
,
T.
,
Li
,
P.
,
Wang
,
S.
,
To
,
S.
, and
Wang
,
H.
,
2021
, “
Analytical Modelling of the Trans-Scale Cutting Forces in Diamond Cutting of Polycrystalline Metals Considering Material Microstructure and Size Effect
,”
Int. J. Mech. Sci.
,
204
, p.
106575
.
53.
Ivester
,
R. W.
,
Kennedy
,
M.
,
Davies
,
M.
,
Stevenson
,
R.
,
Thiele
,
J.
,
Furness
,
R.
, and
Athavale
,
S.
,
2000
, “
Assessment of Machining Models: Progress Report
,”
Mach. Sci. Technol.
,
4
(
3
), pp.
511
538
.
54.
Kobayashi
,
S.
, and
Thomsen
,
E. G.
,
1959
, “
Some Observations on the Shearing Process in Metal Cutting
,”
ASME J. Eng. Ind.
,
81
(
3
), pp.
251
262
.
55.
Bagherzadeh
,
A.
,
Budak
,
E.
,
Ozlu
,
E.
, and
Koc
,
B.
,
2023
, “
Machining Behavior of Inconel 718 in Hybrid Additive and Subtractive Manufacturing
,”
CIRP J. Manuf. Sci. Technol.
,
46
, pp.
178
190
.
56.
Lei
,
S.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
,
1999
, “
Material Constitutive Modeling Under High Strain Rates and Temperatures Through Orthogonal Machining Tests
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
577
585
.
57.
Sartkulvanich
,
P.
,
Koppka
,
F.
, and
Altan
,
T.
,
2004
, “
Determination of Flow Stress for Metal Cutting Simulation—a Progress Report
,”
J. Mater. Process. Technol.
,
146
(
1
), pp.
61
71
.
58.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data For Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics
,
The Hague, Netherlands
,
Apr. 19–21
, pp.
541
547
.
59.
Budak
,
E.
,
Altintas
,
Y.
, and
Armarego
,
E. J. A.
,
1996
, “
Prediction of Milling Force Coefficients From Orthogonal Cutting Data
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
216
224
.
60.
Manes
,
A.
,
Peroni
,
L.
,
Scapin
,
M.
, and
Giglio
,
M.
,
2011
, “
Analysis of Strain Rate Behavior of an Al 6061 T6 Alloy
,”
Procedia Eng.
,
10
, pp.
3477
3482
.
61.
Dabboussi
,
W.
, and
Nemes
,
J. A.
,
2005
, “
Modeling of Ductile Fracture Using the Dynamic Punch Test
,”
Int. J. Mech. Sci.
,
47
(
8
), pp.
1282
1299
.
62.
Scapin
,
M.
, and
Manes
,
A.
,
2018
, “
Behaviour of Al6061-T6 Alloy at Different Temperatures and Strain-Rates: Experimental Characterization and Material Modelling
,”
Mater. Sci. Eng. A
,
734
, pp.
318
328
.
63.
Wang
,
X.
,
2007
, “
Adiabatic Shear Localization for Steels Based on Johnson-Cook Model and Second- and Fourth-Order Gradient Plasticity Models
,”
J. Iron Steel Res. Int.
,
14
(
5
), pp.
56
61
.
64.
Ning
,
J.
, and
Liang
,
S. Y.
,
2018
, “
Evaluation of an Analytical Model in the Prediction of Machining Temperature of AISI 1045 Steel and AISI 4340 Steel
,”
J. Manuf. Mater. Process.
,
2
(
4
), p.
74
.
65.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
66.
Bergs
,
T.
,
Hardt
,
M.
, and
Schraknepper
,
D.
,
2020
, “
Determination of Johnson-Cook Material Model Parameters for AISI 1045 From Orthogonal Cutting Tests Using the Downhill-Simplex Algorithm
,”
Procedia Manuf.
,
48
, pp.
541
552
.
67.
Storchak
,
M.
,
Stehle
,
T.
, and
Möhring
,
H.-C.
,
2022
, “
Determination of Thermal Material Properties for the Numerical Simulation of Cutting Processes
,”
Int. J. Adv. Manuf. Technol.
,
118
(
5–6
), pp.
1941
1956
.
68.
Jaspers
,
S. P. F. C.
, and
Dautzenberg
,
J. H.
,
2002
, “
Material Behaviour in Conditions Similar to Metal Cutting: Flow Stress in the Primary Shear Zone
,”
J. Mater. Process. Technol.
,
122
(
2–3
), pp.
322
330
.
69.
Pereira
,
J. M.
, and
Lerch
,
B. A.
,
2001
, “
Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for jet Engine fan Containment Applications
,”
Int. J. Impact Eng.
,
25
(
8
), pp.
715
733
.
70.
Mitrofanov
,
A. V.
,
Babitsky
,
V. I.
, and
Silberschmidt
,
V. V.
,
2003
, “
Finite Element Simulations of Ultrasonically Assisted Turning
,”
Comput. Mater. Sci.
,
28
(
3–4
), pp.
645
653
.
71.
DeMange
,
J. J.
,
Prakash
,
V.
, and
Pereira
,
J. M.
,
2009
, “
Effects of Material Microstructure on Blunt Projectile Penetration of a Nickel-Based Super Alloy
,”
Int. J. Impact Eng.
,
36
(
8
), pp.
1027
1043
.
72.
Xu
,
D.
,
Ding
,
L.
,
Liu
,
Y.
,
Zhou
,
J.
, and
Liao
,
Z.
,
2021
, “
Investigation of the Influence of Tool Rake Angles on Machining of Inconel 718
,”
J. Manuf. Mater. Process.
,
5
(
3
), p.
100
.
73.
Paturi
,
U. M. R.
, and
Narala
,
S. K. R.
,
2016
, “
Constitutive Flow Stress Formulation for Aeronautic Aluminum Alloy AA7075-T6 at Elevated Temperature and Model Validation Using Finite Element Simulation
,”
Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl.
,
230
(
6
), pp.
994
1004
.
74.
Zhang
,
D.-N.
,
Shangguan
,
Q.-Q.
,
Xie
,
C.-J.
, and
Liu
,
F.
,
2015
, “
A Modified Johnson–Cook Model of Dynamic Tensile Behaviors for 7075-T6 Aluminum Alloy
,”
J. Alloys Compd.
,
619
, pp.
186
194
.
75.
Fang
,
N.
,
2005
, “
A New Quantitative Sensitivity Analysis of the Flow Stress of 18 Engineering Materials in Machining
,”
ASME J. Eng. Mater. Technol.
,
127
(
2
), pp.
192
196
.
76.
Florando
,
J. N.
,
Margraf
,
J. D.
,
Reus
,
J. F.
,
Anderson
,
A. T.
,
McCallen
,
R. C.
,
LeBlanc
,
M. M.
,
Stanley
,
J. R.
,
Rubenchik
,
A. M.
,
Wu
,
S. S.
, and
Lowdermilk
,
W. H.
,
2015
, “
Modeling the Effect of Laser Heating on the Strength and Failure of 7075-T6 Aluminum
,”
Mater. Sci. Eng. A
,
640
, pp.
402
407
.
77.
Peroni
,
L.
,
Scapin
,
M.
,
Fichera
,
C.
,
Manes
,
A.
, and
Giglio
,
M.
,
2012
, “
Mechanical Properties at High Strain-Rate of Lead Core and Brass Jacket of a NATO 7.62 mm Ball Bullet
,”
EPJ Web Conf.
,
26
, p.
01060
.
78.
Klosak
,
M.
,
Jankowiak
,
T.
,
Rusinek
,
A.
,
Bendarma
,
A.
,
Sielicki
,
P. W.
, and
Lodygowski
,
T.
,
2020
, “
Mechanical Properties of Brass Under Impact and Perforation Tests for a Wide Range of Temperatures: Experimental and Numerical Approach
,”
Materials
,
13
(
24
), p.
5821
.
79.
Gilioli
,
A.
,
Manes
,
A.
,
Giglio
,
M.
, and
Wierzbicki
,
T.
,
2015
, “
Predicting Ballistic Impact Failure of Aluminium 6061-T6 With the Rate-Independent Bao–Wierzbicki Fracture Model
,”
Int. J. Impact Eng.
,
76
, pp.
207
220
.
You do not currently have access to this content.