Abstract

In the present study, optimal conditions for the fabrication of chitosan (CS)/graphene oxide (GO) nanocomposite coatings were evaluated by the pulse electrodeposition (PED) process on Mg–2wt%Zn scaffolds. The size distribution of CS, GO suspension, and CS/GO composite was evaluated using dynamic light scattering. The coatings’ microstructure and morphologies were investigated by Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, Raman spectroscopy, thermogravimetric analysis, derivative thermogravimetric analysis, differential thermal analysis, and scanning electron microscopy. The Taguchi statistical method was used to optimize PED parameters, including peak current density (j), duty cycle, and GO nanosheets content (1, 2, and 3 percent by weight [wt%]). Results showed that optimal coatings were produced under the conditions of 2 wt% GO, j = 20 mA/cm2, duty cycle = 0.5, and pH = 5. The process’s time, temperature, and frequency were 20 min, 37°C, and 1,000 Hz. The biocompatibility of coatings was assessed by in vitro test. The results of cell viability and adhesion of MG63 cells on optimal coating are promising for application in bone tissue engineering.

References

1.
Song
G.
and
Song
S.
, “
A Possible Biodegradable Magnesium Implant Material
,”
Advanced Engineering Materials
9
, no. 
4
(April
2007
):
298
302
, https://doi.org/10.1002/adem.200600252
2.
Wolf
F. I.
and
Cittadini
A.
, “
Chemistry and Biochemistry of Magnesium
,”
Molecular Aspects of Medicine
24
, nos.
1–3
(February
2003
):
3
9
, https://doi.org/10.1016/S0098-2997(02)00087-0
3.
Staiger
M. P.
,
Pietak
A. M.
,
Huadmai
J.
, and
Dias
G.
, “
Magnesium and Its Alloys as Orthopedic Biomaterials: A Review
,”
Biomaterials
27
, no. 
9
(March
2006
):
1728
1734
, https://doi.org/10.1016/j.biomaterials.2005.10.003
4.
Witte
F.
,
Kaese
V.
,
Haferkamp
H.
,
Switzer
E.
,
Meyer-Lindenberg
A.
,
Wirth
C. J.
, and
Windhagen
H.
, “
In Vivo Corrosion of Four Magnesium Alloys and the Associated Bone Response
,”
Biomaterials
26
, no. 
17
(June
2005
):
3557
3563
, https://doi.org/10.1016/j.biomaterials.2004.09.049
5.
Li
L.
,
Zhang
M.
,
Li
Y.
,
Zhao
J.
,
Qin
L.
, and
Lai
Y.
, “
Corrosion and Biocompatibility Improvement of Magnesium-Based Alloys as Bone Implant Materials: A Review
,”
Regenerative Biomaterials
4
, no. 
2
(March
2017
):
129
137
, https://doi.org/10.1093/rb/rbx004
6.
Wu
G.
,
Ibrahim
J. M.
, and
Chu
P. K.
, “
Surface Design of Biodegradable Magnesium Alloys — A Review
,”
Surface and Coatings Technology
233
(October
2013
):
2
12
, https://doi.org/10.1016/j.surfcoat.2012.10.009
7.
Hahn
B.-D.
,
Park
D.-S.
,
Choi
J.-J.
,
Ryu
J.
,
Yoon
W.-H.
,
Choi
J.-H.
,
Kim
H.-E.
, and
Kim
S.-G.
, “
Aerosol Deposition of Hydroxyapatite–Chitosan Composite Coatings on Biodegradable Magnesium Alloy
,”
Surface and Coatings Technology
205
, nos. 
8–9
(January
2011
):
3112
3118
, https://doi.org/10.1016/j.surfcoat.2010.11.029
8.
Hu
Q.
and
Luo
Y.
, “
Chitosan-Based Nanocarriers for Encapsulation and Delivery of Curcumin: A Review
,”
International Journal of Biological Macromolecules
179
(May
2021
):
125
135
, https://doi.org/10.1016/j.ijbiomac.2021.02.216
9.
Solìs Moré
Y.
,
Panella
G.
,
Fioravanti
G.
,
Perrozzi
F.
,
Passacantando
M.
,
Giansanti
F.
,
Ardini
M.
, et al., “
Biocompatibility of Composites Based on Chitosan, Apatite, and Graphene Oxide for Tissue Applications
,”
Journal of Biomedical Materials Research: Part A
106
, no. 
6
(June
2018
):
1585
1594
, https://doi.org/10.1002/jbm.a.36361
10.
Montazeri
A.
,
Saeedi
F.
,
Bahari
Y.
, and
Ahmadi Daryakenari
A.
, “
Preclinical Assessment of Chitosan–Polyvinyl Alcohol–Graphene Oxide Nanocomposite Scaffolds as a Wound Dressing
,”
Polymers and Polymer Composites
29
, suppl. 
9
(November
2021
):
S926
S936
, https://doi.org/10.1177/09673911211029242
11.
Jiang
L.
,
Chen
D.
,
Wang
Z.
,
Zhang
Z.
,
Xia
Y.
,
Xue
H.
, and
Liu
Y.
, “
Preparation of an Electrically Conductive Graphene Oxide/Chitosan Scaffold for Cardiac Tissue Engineering
,”
Applied Biochemistry and Biotechnology
188
, no. 
4
(August
2019
):
952
964
, https://doi.org/10.1007/s12010-019-02967-6
12.
Arnaldi
P.
,
Carosio
F.
,
Di Lisa
D.
,
Muzzi
L.
,
Monticelli
O.
, and
Pastorino
L.
, “
Assembly of Chitosan-Graphite Oxide Nanoplatelets Core Shell Microparticles for Advanced 3D Scaffolds Supporting Neuronal Networks Growth
,”
Colloids and Surfaces B: Biointerfaces
196
(December
2020
): 111295, https://doi.org/10.1016/j.colsurfb.2020.111295
13.
Xue
J.
,
Feng
C.
,
Xia
L.
,
Zhai
D.
,
Ma
B.
,
Wang
X.
,
Fang
B.
,
Chang
J.
, and
Wu
C.
, “
Assembly Preparation of Multilayered Biomaterials with High Mechanical Strength and Bone-Forming Bioactivity
,”
Chemistry of Materials
30
, no. 
14
(July
2018
):
4646
4657
, https://doi.org/10.1021/acs.chemmater.8b01272
14.
Vlasceanu
G. M.
,
Şelaru
A.
,
Dinescu
S.
,
Balta
C.
,
Herman
H.
,
Gharbia
S.
,
Hermenean
A.
,
Ionita
M.
, and
Costache
M.
, “
Comprehensive Appraisal of Graphene-Oxide Ratio in Porous Biopolymer Hybrids Targeting Bone-Tissue Regeneration
,”
Nanomaterials
10
, no. 
8
(August
2020
): 1444, https://doi.org/10.3390/nano10081444
15.
Liu
X.
,
Wu
Y.
,
Zhao
X.
, and
Wang
Z.
, “
Fabrication and Applications of Bioactive Chitosan-Based Organic-Inorganic Hybrid Materials: A Review
,”
Carbohydrate Polymers
267
(September
2021
): 118179, https://doi.org/10.1016/j.carbpol.2021.118179
16.
Francolini
I.
,
Perugini
E.
,
Silvestro
I.
,
Lopreiato
M.
,
Scotto d’Abusco
A.
,
Valentini
F.
,
Placidi
E.
,
Arciprete
F.
,
Martinelli
A.
, and
Piozzi
A.
, “
Graphene Oxide Oxygen Content Affects Physical and Biological Properties of Scaffolds Based on Chitosan/Graphene Oxide Conjugates
,”
Materials
12
, no. 
7
(April
2019
): 1142, https://doi.org/10.3390/ma12071142
17.
Nayak
T. R.
,
Andersen
H.
,
Makam
V. S.
,
Khaw
C.
,
Bae
S.
,
Xu
X.
,
Ee
P.-L. R.
, et al., “
Graphene for Controlled and Accelerated Osteogenic Differentiation of Human Mesenchymal Stem Cells
,”
ACS Nano
5
, no. 
6
(June
2011
):
4670
4678
, https://doi.org/10.1021/nn200500h
18.
Bressan
E.
,
Ferroni
L.
,
Gardin
C.
,
Sbricoli
L.
,
Gobbato
L.
,
Ludovichetti
F. S.
,
Tocco
I.
,
Carraro
A.
,
Piattelli
A.
, and
Zavan
B.
, “
Graphene Based Scaffolds Effects on Stem Cells Commitment
,”
Journal of Translational Medicine
12
, no. 
1
(
2014
): 296, https://doi.org/10.1186/s12967-014-0296-9
19.
Feng
W.
and
Wang
Z.
, “
Biomedical Applications of Chitosan-Graphene Oxide Nanocomposites
,”
iScience
25
, no. 
1
(January
2022
): 103629, https://doi.org/10.1016/j.isci.2021.103629
20.
Hermenean
A.
,
Codreanu
A.
,
Herman
H.
,
Balta
C.
,
Rosu
M.
,
Mihali
C. V.
,
Ivan
A.
,
Dinescu
S.
,
Ionita
M.
, and
Costache
M.
, “
Chitosan-Graphene Oxide 3D Scaffolds as Promising Tools for Bone Regeneration in Critical-Size Mouse Calvarial Defects
,”
Scientific Reports
7
, no. 
1
(
2017
): 16641, https://doi.org/10.1038/s41598-017-16599-5
21.
Qiu
X.
,
Wan
P.
,
Tan
L.
,
Fan
X.
, and
Yang
K.
, “
Preliminary Research on a Novel Bioactive Silicon Doped Calcium Phosphate Coating on AZ31 Magnesium Alloy via Electrodeposition
,”
Materials Science and Engineering: C
36
(March
2014
):
65
76
, https://doi.org/10.1016/j.msec.2013.11.041
22.
Li
L.-Y.
,
Cui
L.-Y.
,
Zeng
R.-C.
,
Li
S.-Q.
,
Chen
X.-B.
,
Zheng
Y.
, and
Kannan
M. B.
, “
Advances in Functionalized Polymer Coatings on Biodegradable Magnesium Alloys – A Review
,”
Acta Biomaterialia
79
(October
2018
):
23
36
, https://doi.org/10.1016/j.actbio.2018.08.030
23.
Hornberger
H.
,
Virtanen
S.
, and
Boccaccini
A. R.
, “
Biomedical Coatings on Magnesium Alloys – A Review
,”
Acta Biomaterialia
8
, no. 
7
(July
2012
):
2442
2455
, https://doi.org/10.1016/j.actbio.2012.04.012
24.
Zhang
J.
,
Dai
C.
,
Wei
J.
,
Wen
Z.
,
Zhang
S.
, and
Chen
C.
, “
Degradable Behavior and Bioactivity of Micro-Arc Oxidized AZ91D Mg Alloy with Calcium Phosphate/Chitosan Composite Coating in m-SBF
,”
Colloids and Surfaces B: Biointerfaces
111
(November
2013
):
179
187
, https://doi.org/10.1016/j.colsurfb.2013.05.040
25.
Park
K. H.
,
Kim
S.-J.
,
Hwang
M.-J.
,
Song
H.-J.
, and
Park
Y.-J.
, “
Pulse Electrodeposition of Hydroxyapatite/Chitosan Coatings on Titanium Substrate for Dental Implant
,”
Colloid and Polymer Science
295
, no. 
10
(October
2017
):
1843
1849
, https://doi.org/10.1007/s00396-017-4166-x
26.
Chandrasekar
M. S.
and
Pushpavanam
M.
, “
Pulse and Pulse Reverse Plating—Conceptual, Advantages and Applications
,”
Electrochimica Acta
53
, no. 
8
(March
2008
):
3313
3322
, https://doi.org/10.1016/j.electacta.2007.11.054
27.
Wang
H. X.
,
Guan
S. K.
,
Wang
X.
,
Ren
C. X.
, and
Wang
L. G.
, “
In Vitro Degradation and Mechanical Integrity of Mg-Zn-Ca Alloy Coated with Ca-Deficient Hydroxyapatite by the Pulse Electrodeposition Process
,”
Acta Biomaterialia
6
, no. 
5
(May
2010
):
1743
1748
, https://doi.org/10.1016/j.actbio.2009.12.009
28.
Seyedraoufi
Z. S.
and
Mirdamadi
S.
, “
Effects of Pulse Electrodeposition Parameters and Alkali Treatment on the Properties of Nano Hydroxyapatite Coating on Porous Mg–Zn Scaffold for Bone Tissue Engineering Application
,”
Materials Chemistry and Physics
148
, no. 
3
(December
2014
):
519
527
, https://doi.org/10.1016/j.matchemphys.2014.06.067
29.
Seyedraoufi
Z. S.
and
Mirdamadi
S.
, “
In Vitro Biodegradability and Biocompatibility of Porous Mg-Zn Scaffolds Coated with Nano Hydroxyapatite via Pulse Electrodeposition
,”
Transactions of Nonferrous Metals Society of China
25
, no. 
12
(December
2015
):
4018
4027
, https://doi.org/10.1016/S1003-6326(15)64051-1
30.
Hamghavandi
M. R.
,
Montazeri
A.
,
Ahmadi Daryakenari
A.
, and
Pishvaei
M.
, “
Preparation and Characterization of Chitosan/Graphene Oxide Nanocomposite Coatings on Mg-2 wt% Zn Scaffold by Pulse Electrodeposition Process
,”
Biomedical Materials
16
, no. 
6
(November
2021
): 065005, https://doi.org/10.1088/1748-605X/ac1f9f
31.
Wang
Y.
,
Lu
X.
,
Li
D.
,
Feng
B.
,
Qu
S.
, and
Weng
J.
,
“Hydroxyapatite/Chitosan Composite Coatings on Titanum Surface by Pulsed Electrochemical Deposition” (in Chinese)
,
Acta Polymerica Sinica
11
, no. 
11
(November
2011
):
1244
1252
, https://doi.org/10.3724/SP.J.1105.2011.10309
32.
Saremi
M.
and
Golshan
B. M.
, “
Microstructural Study of Nano Hydroxyapatite Coating Obtained by Pulse Electrodeposition Process on Ti–6Al–4V
,”
The International Journal of Surface Engineering and Coatings
85
, no. 
2
(
2007
):
99
102
, https://doi.org/10.1179/174591907X181269
33.
Jia
L.
,
Liang
C.
,
Huang
N.
,
Zhou
Z.
,
Duan
F.
, and
Wang
L.
, “
Morphology and Composition of Coatings Based on Hydroxyapatite-Chitosan-RuCl3 System on AZ91D Prepared by Pulsed Electrochemical Deposition
,”
Journal of Alloys and Compounds
656
(January
2016
):
961
971
, https://doi.org/10.1016/j.jallcom.2015.09.223
34.
Shahverdi
N.
,
Montazeri
A.
,
Khavandi
A.
,
Rezaei
H. R.
, and
Saeedi
F.
, “
Fabrication of Nanohydroxyapatite-Chitosan Coatings by Pulse Electrodeposition Method
,”
Journal of Inorganic and Organometallic Polymers and Materials
32
, no. 
12
(December
2022
):
4649
4663
, https://doi.org/10.1007/s10904-022-02468-w
35.
Yu
X.
,
Zhang
R.
,
Cui
G.
, and
Li
Z.
, “
Influence of Pulse Parameters on the Morphology and Corrosion Resistance of Nickel-Graphene Composite Coating
,”
International Journal of Electrochemical Science
14
, no. 
5
(May
2019
):
4754
4768
, https://doi.org/10.20964/2019.05.48
36.
Rosa
J. L.
,
Robin
A.
,
Silva
M. B.
,
Baldan
C. A.
, and
Peres
M. P.
, “
Electrodeposition of Copper on Titanium Wires: Taguchi Experimental Design Approach
,”
Journal of Materials Processing Technology
209
, no. 
3
(February
2009
):
1181
1188
, https://doi.org/10.1016/j.jmatprotec.2008.03.021
37.
Rao
R. S.
,
Prakasham
R. S.
,
Prasad
K. K.
,
Rajesham
S.
,
Sarma
P. N.
, and
Rao
L. V.
, “
Xylitol Production by Candida sp.: Parameter Optimization Using Taguchi Approach
,”
Process Biochemistry
39
, no. 
8
(April
2004
):
951
956
, https://doi.org/10.1016/S0032-9592(03)00207-3
38.
Rao
R. S.
,
Kumar
C. G.
,
Prakasham
R. S.
, and
Hobbs
P. J.
, “
The Taguchi Methodology as a Statistical Tool for Biotechnological Applications: A Critical Appraisal
,”
Biotechnology Journal
3
, no. 
4
(April
2008
):
510
523
, https://doi.org/10.1002/biot.200700201
39.
Lawal
D.
,
Bin Ali
A.
, and
Mohammed
A. S.
, “
Tribological Investigations of Carbon Nanotube-Reinforced Polymer (UHMWPE) Nanocomposites Using Taguchi Methodology
,”
Journal of Applied Polymer Science
133
, no. 
40
(October
2016
): https://doi.org/10.1002/app.44018
40.
Hummers
W. S.
 Jr.
and
Offeman
R. E.
, “
Preparation of Graphitic Oxide
,”
Journal of the American Chemical Society
80
, no. 
6
(March
1958
): 1339, https://doi.org/10.1021/ja01539a017
41.
Biological Evaluation of Medical Devices Part 5: Tests for In Vitro Cytotoxicity
, ISO 10933-5 (Geneva, Switzerland:
International Organization for Standardization
,
2009
).
42.
Liu
S.
,
Zeng
T. H.
,
Hofmann
M.
,
Burcombe
E.
,
Wei
J.
,
Jiang
R.
,
Kong
J.
, and
Chen
Y.
, “
Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress
,”
ACS Nano
5
, no. 
9
(September
2011
):
6971
6980
, https://doi.org/10.1021/nn202451x
43.
Ordikhani
F.
,
Ramezani Farani
M.
,
Dehghani
M.
,
Tamjid
E.
, and
Simchi
A.
, “
Physicochemical and Biological Properties of Electrodeposited Graphene Oxide/Chitosan Films with Drug-Eluting Capacity
,”
Carbon
84
(April
2015
):
91
102
, https://doi.org/10.1016/j.carbon.2014.11.052
44.
Yan
T.
,
Zhang
H.
,
Huang
D.
,
Feng
S.
,
Fujita
M.
, and
Gao
X.-D.
, “
Chitosan-Functionalized Graphene Oxide as a Potential Immunoadjuvant
,”
Nanomaterials
7
, no. 
3
(March
2017
): 59, https://doi.org/10.3390/nano7030059
45.
Li
J.
,
Ren
N.
,
Qiu
J.
,
Mou
X.
, and
Liu
H.
, “
Graphene Oxide-Reinforced Biodegradable Genipin-Cross-Linked Chitosan Fluorescent Biocomposite Film and Its Cytocompatibility
,”
International Journal of Nanomedicine
8
, no. 
1
(
2013
):
3415
3426
, https://doi.org/10.2147/IJN.S51203
46.
Pati
M. K.
,
Pattojoshi
P.
, and
Roy
G. S.
, “
Synthesis of Graphene-Based Nanocomposite and Investigations of Its Thermal and Electrical Properties
,”
Journal of Nanotechnology
2016
(
2016
): 5135420, https://doi.org/10.1155/2016/5135420
47.
Zuo
P.-P.
,
Feng
H.-F.
,
Xu
Z.-Z.
,
Zhang
L.-F.
,
Zhang
Y.-L.
,
Xia
W.
, and
Zhang
W.-Q.
, “
Fabrication of Biocompatible and Mechanically Reinforced Graphene Oxide-Chitosan Nanocomposite Films
,”
Chemistry Central Journal
7
, no. 
1
(
2013
): 39, https://doi.org/10.1186/1752-153X-7-39
48.
Yang
K.
,
Feng
L.
,
Hong
H.
,
Cai
W.
, and
Liu
Z.
, “
Preparation and Functionalization of Graphene Nanocomposites for Biomedical Applications
,”
Nature Protocols
8
, no. 12 (December
2013
):
2392
2403
, https://doi.org/10.1038/nprot.2013.146
49.
Suneetha
R. B.
, “
Spectral, Thermal and Morphological Characterization of Biodegradable Graphene Oxide-Chitosan Nanocomposites
,”
Journal of Nanoscience and Technology
4
, no. 
2
(
2018
):
342
344
, https://doi.org/10.30799/jnst.sp208.18040201
50.
Rana
V. K.
,
Choi
M.-C.
,
Kong
J.-Y.
,
Kim
G. Y.
,
Kim
M. J.
,
Kim
S.-H.
,
Mishra
S.
,
Singh
R. P.
, and
Ha
C.-S.
, “
Synthesis and Drug-Delivery Behavior of Chitosan-Functionalized Graphene Oxide Hybrid Nanosheets
,”
Macromolecular Materials and Engineering
296
, no. 
2
(February
2011
):
131
140
, https://doi.org/10.1002/mame.201000307
51.
Liu
L.
,
Li
C.
,
Bao
C.
,
Jia
Q.
,
Xiao
P.
,
Liu
X.
, and
Zhang
Q.
, “
Preparation and Characterization of Chitosan/Graphene Oxide Composites for the Adsorption of Au(III) and Pd(II)
,”
Talanta
93
(May
2012
):
350
357
, https://doi.org/10.1016/j.talanta.2012.02.051
52.
Dinescu
S.
,
Ionita
M.
,
Pandele
A. M.
,
Galateanu
B.
,
Iovu
H.
,
Ardelean
A.
,
Costache
M.
, and
Hermenean
A.
, “
In Vitro Cytocompatibility Evaluation of Chitosan/Graphene Oxide 3D Scaffold Composites Designed for Bone Tissue Engineering
,”
Bio-Medical Materials and Engineering
24
, no. 
6
(
2014
):
2249
2256
, https://doi.org/10.3233/BME-141037
53.
Bonilla
J.
,
Fortunati
E.
,
Atarés
L.
,
Chiralt
A.
, and
Kenny
J. M.
, “
Physical, Structural and Antimicrobial Properties of Poly Vinyl Alcohol–Chitosan Biodegradable Films
,”
Food Hydrocolloids
35
(March
2014
):
463
470
, https://doi.org/10.1016/j.foodhyd.2013.07.002
54.
Travlou
N. A.
,
Kyzas
G. Z.
,
Lazaridis
N. K.
, and
Deliyanni
E. A.
, “
Graphite Oxide/Chitosan Composite for Reactive Dye Removal
,”
Chemical Engineering Journal
217
(February
2013
):
256
265
, https://doi.org/10.1016/j.cej.2012.12.008
55.
Lock
J.
,
Nguyen
T. Y.
, and
Liu
H.
, “
Nanophase Hydroxyapatite and Poly(Lactide-Co-Glycolide) Composites Promote Human Mesenchymal Stem Cell Adhesion and Osteogenic Differentiation In Vitro
,”
Journal of Materials Science: Materials in Medicine
23
, no. 
10
(October
2012
):
2543
2552
, https://doi.org/10.1007/s10856-012-4709-0
56.
Nagarajan
S.
,
Mohana
M.
,
Sudhagar
P.
,
Raman
V.
,
Nishimura
T.
,
Kim
S.
,
Kang
Y. S.
, and
Rajendran
N.
, “
Nanocomposite Coatings on Biomedical Grade Stainless Steel for Improved Corrosion Resistance and Biocompatibility
,”
ACS Applied Materials & Interfaces
4
, no. 
10
(October
2012
):
5134
5141
, https://doi.org/10.1021/am301559r
57.
Suo
L.
,
Jiang
N.
,
Wang
Y.
,
Wang
P.
,
Chen
J.
,
Pei
X.
,
Wang
J.
, and
Wan
Q.
, “
The Enhancement of Osseointegration Using a Graphene Oxide/Chitosan/Hydroxyapatite Composite Coating on Titanium Fabricated by Electrophoretic Deposition
,”
Journal of Biomedical Materials Research Part B: Applied Biomaterials
107
, no. 
3
(April
2019
):
635
645
, https://doi.org/10.1002/jbm.b.34156
This content is only available via PDF.
You do not currently have access to this content.