Carbon nanotubes are a material system of increasing technological importance with superb mechanical and electrical properties. It is well known that depending on details of atomic structure, nanotubes may be electrically conducting, semiconducting, or insulating, so deformation is believed to have strong effects on nanotube electrical properties. In this paper, a combination of continuum, empirical atomistic, and quantum atomistic modeling methods are used to demonstrate the effect of homogeneous deformation—tension, compression, and torsion—on the electrical conductance and current versus voltage (I(V)) characteristics of a variety of single wall carbon nanotubes. The modeling methods are used in a coupled and efficient multiscale formulation that allows for computationally inexpensive analysis of a wide range of deformed nanotube configurations. Several important observations on the connection between mechanical and electrical behavior are made based on the transport calculations. First, based on the I(V) characteristics, electron transport in the nanotubes is evidently fairly insensitive to homogeneous deformation, though in some cases there is a moderate strain effect at either relatively low or high applied voltages. In particular, the conductance, or dI/dV behavior, shows interesting features for nanotubes deformed in torsion over small ranges of applied bias. Second, based on a survey of a range of nanotube geometries, the primary determining feature of the I(V) characteristics is simply the number of conduction electrons available per unit length of nanotube. In other words, when the current is normalized by the number of free electrons on the tube cross section per unit length, which itself is affected by extensional (but not torsional) strain, the I(V) curves of all single walled carbon nanotubes are nearly co-linear.

1.
Krishnan
,
A.
,
Dujardin
,
E.
,
Ebbesen
,
T. W.
,
Yianilos
,
P. N.
, and
Treacy
,
M. M. J.
,
1998
, “
Young’s Modulus of Single-Walled Nanotubes
,”
Phys. Rev. B
,
58
, pp.
14013
14019
.
2.
Wong
,
E. W.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
,
1997
, “
Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes
,”
Science
,
277
, pp.
1971
1975
.
3.
Saito, R., Dresselhaus, G., and Dresselhaus, M. S., 1998, Physical Properties of Carbon Nanotubes, Imperial College Press, London.
4.
Nardelli
,
M. B.
, and
Bernholc
,
J.
,
1999
, “
Mechanical Deformations and Coherent Transport in Carbon Nanotubes
,”
Phys. Rev. B
,
60
, pp.
R16338–R16341
R16338–R16341
.
5.
Heyd
,
R.
,
Charlier
,
A.
, and
McRae
,
E.
,
1997
, “
Uniaxial-Stress Effects on the Electronic Properties of Carbon Nanotubes
,”
Phys. Rev. B
,
55
, pp.
6820
6824
.
6.
Yang
,
L.
,
Anantram
,
M. P.
,
Han
,
J.
, and
Lu
,
J. P.
,
1999
, “
Band-Gap Change of Carbon Nanotubes: Effect of Small Uniaxial and Torsional Strain
,”
Phys. Rev. B
,
60
, pp.
13874
13878
.
7.
Nardelli
,
M. B.
,
Fattebert
,
J. L.
,
Orlikowski
,
D.
,
Roland
,
C.
,
Zhao
,
Q.
, and
Bernholc
,
J.
,
2000
, “
Mechanical Properties, Defects and Electronic Behavior of Carbon Nanotubes
,”
Carbon
,
38
, pp.
1703
1711
.
8.
Rochefort
,
A.
,
Avouris
,
P.
,
Lesage
,
F.
, and
Salahub
,
D. R.
,
1999
, “
Electrical and Mechanical Properties of Distorted Carbon Nanotubes
,”
Phys. Rev. B
,
60
, pp.
13824
13830
.
9.
Sanvito
,
S.
,
Kwon
,
Y. K.
,
Tomanek
,
D.
, and
Lambert
,
C. J.
,
2000
, “
Fractional Quantum Conductance in Carbon Nanotubes
,”
Phys. Rev. Lett.
,
84
, pp.
1974
1977
.
10.
Chico
,
L.
,
Benedict
,
L. X.
,
Louie
,
S. G.
, and
Cohen
,
M. L.
,
1996
, “
Quantum Conductance of Carbon Nanotubes With Defects
,”
Phys. Rev. B
,
54
, pp.
2600
2606
.
11.
Anantram
,
M. P.
, and
Govindan
,
T. R.
,
1998
, “
Conductance of Carbon Nanotubes With Disorder: A Numerical Study
,”
Phys. Rev. B
,
58
, pp.
4882
4887
.
12.
Tadmor
,
E. B.
,
Phillips
,
R.
, and
Ortiz
,
M.
,
1996
, “
Mixed Atomistic and Continuum Models of Deformation in Solids
,”
Langmuir
,
12
, pp.
4529
4534
.
13.
Tadmor
,
E. B.
,
Ortiz
,
M.
, and
Phillips
,
R.
,
1996
, “
Quasicontinuum Analysis of Defects in Solids
,”
Philos. Mag. A
,
73
, pp.
1529
1563
.
14.
Born, M., and Huang, K., 1954, Dynamical Theory of the Crystal Lattices, Oxford University Press, Oxford.
15.
Milstein
,
F.
,
1980
, “
Review: Theoretical Elastic Behavior at Large Strains
,”
J. Mater. Sci.
,
15
, pp.
1071
1084
.
16.
Weiner, J. H., 1983, Statistical Mechanics of Elasticity, John Wiley & Sons, New York.
17.
Tadmor
,
E. B.
,
Smith
,
G. S.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
,
1999
, “
Mixed Finite Element and Atomistic Formulation for Complex Crystals
,”
Phys. Rev. B
,
59
, pp.
235
245
.
18.
Johnson
,
H. T.
,
Phillips
,
R.
, and
Freund
,
L. B.
,
1999
, “
Electronic Structure Boundary Value Problems Without All of the Atoms
,”
Mater. Res. Soc. Symp. Proc.
,
538
, pp.
479
484
.
19.
Liu
,
B.
,
Jiang
,
H.
,
Johnson
,
H. T.
, and
Huang
,
Y.
,
2003
, “
The Influence of Mechanical Deformation on the Electrical Properties of Single Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
,
52
, pp.
1
26
.
20.
Brenner
,
D. W.
,
1990
, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films
,”
Phys. Rev. B
,
42
, pp.
9458
9471
.
21.
Slater
,
J. C.
, and
Koster
,
G. F.
,
1954
, “
Simplified LCAO Method for the Periodic Potential Problem
,”
Phys. Rev.
,
94
, pp.
1498
1524
.
22.
Xu
,
C. H.
,
Wang
,
C. Z.
,
Chan
,
C. T.
, and
Ho
,
K. M.
,
1992
, “
A Transferable Tight-binding Potential for Carbon
,”
J. Phys.: Condens. Matter
,
4
, pp.
6047
6054
.
23.
Tian
,
W.
, and
Datta
,
S.
,
1994
, “
Aharonov-Bohm-Type Effect in Graphene Tubules—A Landauer Approach
,”
Phys. Rev. B
,
49
, pp.
5097
5100
.
24.
Bu¨ttiker
,
M.
,
Imry
,
Y.
,
Landauer
,
R.
, and
Pinhas
,
S.
,
1985
, “
Generalized Many-Channel Conductance Formula With Application to Small Rings
,”
Phys. Rev. B
,
31
, pp.
6207
6215
.
You do not currently have access to this content.