In this paper, we report on molecular dynamics (MD), continuum (based on linear and nonlinear beam theories) and combined molecular dynamics/continuum simulation of carbon nanotube based nanoelectromechanical switches. As a prototype device, we study the pull-in voltage characteristics of a nanoelectromechanical switch made of a suspended single wall nanotube over a ground plane. The various simulations (MD, continuum and combined MD/continuum) have been performed accounting for the electrostatic and van der Waals forces between the nanotube and the ground plane. The results from the nonlinear continuum theory compared well with the results from MD, except, for cases, where nanotube buckling was observed. When buckling occurs, the electromechanical behavior of the switch is simulated by employing a combined MD/continuum approach. The combined MD/continuum approach is computationally more efficient compared to the MD simulation of the entire device. Static and dynamic pull-in, pull-in time and fundamental frequency analysis is presented for fixed-fixed and cantilever carbon nanotube switches.

1.
Rueckes
,
T.
,
Kim
,
K.
,
Joselevich
,
E.
,
Tseng
,
G. Y.
,
Cheung
,
C. L.
, and
Lieber
,
C. M.
,
2000
, “
Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing
,”
Science
,
289
, pp.
94
97
.
2.
Kim
,
P.
, and
Lieber
,
C. M.
,
1999
, “
Nanotube Nanotweezers
,”
Science
,
286
, pp.
2148
2150
.
3.
Baughman
,
R. H.
et al.
,
1999
, “
Carbon Nanotube Actuators
,”
Science
,
284
, pp.
1340
1344
.
4.
Greengard
,
L.
, and
Rokhlin
,
V.
,
1987
, “
A Fast Algorithm for Particle Simulations
,”
J. Comput. Phys.
,
73
(
2
), pp.
325
348
.
5.
York
,
D.
,
Darden
,
T.
, and
Pedersen
,
L.
,
1993
, “
Particle Mesh Ewald: Annlog(n) Method for Ewald Sums in Large Systems
,”
J. Chem. Phys.
,
98
, pp.
10089
10092
.
6.
Dequesnes
,
M.
,
Rotkin
,
S. V.
, and
Aluru
,
N. R.
,
2002
, “
Calculation of Pull-In Voltages for Carbon Nanotube-Based Nanoelectromechanical Switches
,”
Nanotechnology
,
13
, pp.
120
131
.
7.
Lennard-Jones
,
J. E.
,
1930
, “
Perturbation Problems in Quantum Mechanics
,”
Proc. R. Soc. London, Ser. A
,
129
, pp.
598
615
.
8.
Girifalco
,
L. A.
,
Hodak
,
M.
, and
Lee
,
R. S.
,
2000
, “
Carbon Nanotubes, Buckyballs, Ropes, and a Universal Graphitic Potential
,”
Phys. Rev. B
,
62
(
19
), pp.
13104
13110
.
9.
Jackson, J. D., 1998, Classical Electrodynamics, 3rd ed., Wiley, John & Sons, New York.
10.
Bulashevich
,
K. A.
, and
Rotkin
,
S. V.
,
2002
, “
Nanotube Devices: A Microscopic Model
,”
JETP Lett.
,
75
(
4
), pp.
205
209
.
11.
Dequesnes
,
M.
,
Rotkin
,
S. V.
, and
Aluru
,
N. R.
,
2002
, “
Parameterization of Continuum Theories for Single Wall Carbon Nanotube Switches by Molecular Dynamics Simulations
,”
J. Comput. Electron.
,
1
(
3
), pp.
313
316
.
12.
Abdel-Rahman
,
E. M.
et al.
,
2002
, “
Characterization of the Mechanical Behavior of an Electrically Actuated Microbeam
,”
J. Micromech. Microeng.
,
12
, pp.
759
766
.
13.
Aluru
,
N. R.
, and
Li
,
G.
,
2001
, “
Finite Cloud Method: A True Meshless Technique Based on a Fixed Reproducing Kernel Approximation
,”
Int. J. Numer. Methods Eng.
,
50
, pp.
2373
2410
.
14.
Han
,
J.
,
Globus
,
A.
,
Jaffe
,
R.
, and
Deardorff
,
G.
,
1997
, “
Molecular Dynamics Simulations of Carbon Nanotube-Based Gears
,”
Nanotechnology
,
8
, pp.
95
102
.
15.
Srivastava
,
D.
,
Menon
,
M.
, and
Cho
,
K.
,
2001
, “
Computational Nanotechnology With Carbon Nanotubes and Fullerenes
,”
Comput. Sci. Eng.
,
3
(
4
), pp.
42
55
.
16.
Brenner
,
D. W.
,
1990
, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films
,”
Phys. Rev. B
,
42
(
15
), pp.
9458
9471
.
17.
Haile, J. M., 1992, “Molecular Dynamics Simulation: Elementary Methods,” Wiley, New York.
18.
Rao
,
A. M.
et al.
,
2000
, “
Diameter-Selective Raman Scattering From Vibrational Modes in Carbon Nanotubes
,”
Science
,
289
, pp.
94
97
.
19.
Kelly, S. G., 1993, Fundamentals of Mechanical Vibrations, McGraw-Hill, New York.
20.
Smith, B., Petter, B., and Gropp, W., 1996, Domain Decomposition, Cambridge Univ. Press, Cambridge, UK.
21.
Ananthasuresh
,
G. K.
,
Gupta
,
R. K.
, and
Senturia
,
S. D.
,
1996
, “
An Approach to Macromodeling of Mems for Nonlinear Dynamic Simulation
,”
MEMS ASME Proceedings
,
59
, pp.
401
407
.
You do not currently have access to this content.