The fracture toughness of highly-ordered multi-wall carbon-nanotube-reinforced alumina composites is calculated from experimental data on nanoindentation cracking. A combined analytical and numerical model, using cohesive zone models for both matrix cracking and nanotube crack bridging and accounting for residual stresses, is developed to interpret the indentation results and evaluate the fracture toughness of the composite. Results show that residual stress and nanotube bridging play important roles in the nanocomposite fracture. The contribution to toughness from the nanotube bridging for cracking transverse to the axis of the nanotubes is calculated to be ∼5 MPa-m1/2. From the nanotube bridging law, the nanotube strength and interfacial frictional stress are also estimated and range from 15–25 GPa and 40–200 MPa, respectively. These preliminary results demonstrate that nanotube-reinforced ceramics can exhibit the interfacial debonding/sliding and nanotube bridging necessary to induce nanoscale toughening, and suggest the feasibility of engineering residual stresses, nanotube structure, and composite geometry to obtain high-toughness nanocomposites.

1.
Yu
,
M. F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Molor
,
K.
,
Kelly
,
T. F.
, and
Ruoff
,
R. S.
,
2000
, “
Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Loads
,”
Science
,
287
, pp.
637
640
.
2.
Wagner
,
H. D.
,
Lourie
,
O.
,
Feldman
,
Y.
, and
Tenne
,
R.
,
1998
, “
Stress-Induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix
,”
Appl. Phys. Lett.
,
72
, pp.
188
190
.
3.
Yakobson
,
B. I.
, and
Avouris
,
P.
,
2001
, “
Mechanical Properties of Carbon Nanotubes
,”
Top. Appl. Phys.
,
80
, pp.
287
327
.
4.
Nardelli
,
M. B.
,
Yakobson
,
B. I.
, and
Bernholc
,
J.
,
1998
, “
Brittle and Ductile Behavior in Carbon Nanotubes
,”
Phys. Rev. Lett.
,
81
, pp.
4656
4659
.
5.
Belytschko
,
T.
,
Xiao
,
S. P.
,
Schatz
,
G. C.
, and
Ruoff
,
R. S.
,
2002
, “
Atomistic Simulation of Nanotube Fracture
,”
Phys. Rev. B
,
65
,
235430
235430
.
6.
Laurent
,
Ch.
,
Peigney
,
A.
,
Durnortier
,
O.
, and
Rousset
,
A.
,
1998
, “
Carbon Nanotubes-Fe-Alumina Nanocomposites: Part II—Microstructure and Mechanical Properties the Hot-Pressed Composites
,”
Euro. Cerm. Soc.
,
18
, pp.
2005
2013
.
7.
Ma
,
R. Z.
,
Wu
,
J.
,
Wei
,
B. Q.
,
Liang
,
J.
, and
Wu
,
D. H.
,
1998
, “
Processing and Properties of Carbon Nanotubes-Nano-SiC Ceramics
,”
Mater. Sci.
,
33
, pp.
524
546
.
8.
Zhan
,
G.-D.
,
Kuntz
,
J.
,
Wan
,
J.
, and
Mukherjee
,
A. K.
,
2003
, “
Single-Wall Carbon Nanotubes as Attractive Toughening Agents in Alumina-Based Nanocomposites
,”
Nat. Mater.
,
2
, pp.
38
42
.
9.
Lourie
,
O.
, and
Wagner
,
H. D.
,
1999
, “
Evidence of Stress Transfer and Formation of Fracture Clusters in Carbon Nanotube-Based Composites
,”
Compos. Sci. Technol.
,
59
, pp.
975
977
.
10.
Andrews
,
R.
,
Jacques
,
D.
,
Rao
,
A. M.
,
Rantell
,
T.
, and
Derbyshire
,
F.
,
1999
, “
Continuous Production of Aligned Carbon Nanotubes: A Step Closer to Commercial Realization
,”
Appl. Phys. Lett.
,
76
, pp.
2868
2870
.
11.
Qian
,
D.
,
Dickey
,
E. C.
,
Andrews
,
R.
, and
Rantell
,
T.
,
2000
, “
Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites
,”
Appl. Phys. Lett.
,
76
, pp.
2868
2870
.
12.
Allaoui
,
A.
,
Bai
,
S.
,
Cheng
,
H. M.
, and
Bai
,
J. B.
,
2002
, “
Mechanical and Electrical Properties of a MWNT/Epoxy Composite
,”
Compos. Sci. Technol.
,
62
, pp.
993
1998
.
13.
Peigney
,
A.
,
Flahaut
,
E.
,
Laurent
,
Ch.
,
Chastel
,
F.
, and
Rousset
,
A.
,
2002
, “
Aligned Carbon Nanotubes in Ceramic-Matrix Nanocomposites Prepared by High-Temperature Extrusion
,”
Chem. Phys. Lett.
,
352
, pp.
20
25
.
14.
Xia
,
Z.
,
Riester
,
L.
,
Curtin
,
W. A.
,
Li
,
H.
,
Sheldon
,
B. W.
,
Liang
,
J.
,
Chang
,
B.
, and
Xu
,
J.
,
2004
, “
Direct Observation of Toughening Mechanisms in Carbon-Nanotube Ceramic Matrix Composites
,”
Acta Mater.
52
, pp.
931
944
.
15.
Curtin, W. A., 2000, Encyclopedia of Composites, A. Kelly and C. Zweben, eds., Elsevier, Holland.
16.
Pharr
,
G. M.
,
1998
, “
Measurement of Mechanical Properties by Ultra-Low Load Indentation
,”
Mater. Sci. Eng.
,
A253
, pp.
151
159
.
17.
Aveston J., Cooper G. A., and Kelly, A., 1971, The Properties of Composites, Conference Proceedings, IPI Science and Technology Press, Teddington, UK, pp. 15–26.
18.
Budiansky
,
B.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
1986
, “
Matrix Fracture of Fiber-Reinforced Ceramics
,”
J. Mech. Phys. Solids
,
34
, pp.
167
189
.
19.
Marshall
,
D. B.
,
Cox
,
B. N.
, and
Evans
,
A. G.
,
1985
, “
The Mechanics of Matrix Cracking in Brittle-Matrix Fiber Composites
,”
Acta Metall.
,
33
, pp.
2013
2021
.
20.
McCartney
,
L. N.
,
1987
, “
Mechanics of Matrix Cracking in Brittle-Matrix Fiber-Reinforced Composites
,”
Proc. R. Soc. London, Ser. A
,
409
, pp.
329
350
.
21.
Majumdar, B. S., Newaz, G. M., and Rosefield, A. R., 1989, Advance in Fracture Research, Proc. 7th Intern. Conf. Fract., Pergamon Press, pp. 2805–2814.
22.
Danchaivijit
,
S.
, and
Shetty
,
D. K.
,
1993
, “
Matrix Cracking in Ceramic-Matrix Composites
,”
J. Am. Ceram. Soc.
,
76
, pp.
2497
2504
.
23.
Marshall
,
D. B.
, and
Evans
,
A. G.
,
1988
, “
The Influence of Residual Stress on the Toughness of Reinforced Composites
,”
Mater. Forum
,
11
, pp.
304
312
.
24.
Swanson
,
P. L.
,
Fairbanks
,
C. J.
,
Lawn
,
B. R.
, and
Mai
,
Y. W.
,
1987
, “
Crack-Interface Grain Bridging as a Fracture Resistance Mechanism in Ceramics: II—Theoretical Fracture Mechanics Model
,”
J. Am. Ceram. Soc.
,
70
, p.
279
279
.
25.
Bennison
,
S. T.
, and
Lawn
,
B. R.
,
1989
, “
Role of Interfacial Grain-Bridging Sliding Fraction in the Crack-Resistance and Strength Properties of Nontransforming Ceramics
,”
Acta Metall.
,
37
, pp.
2659
2671
.
26.
Cook
,
R. F.
,
1990
, “
Segregation Effects in the Fracture of Brittle Materials-CA-Al2O3,
Acta Metall.
,
38
, pp.
1083
1100
.
27.
Vekinis
,
G.
,
Ashby
,
M. F.
, and
Beaumont
,
P. W. R.
,
1990
, “
R-Curve Behavior of Al2O3 Ceramic
,”
Acta Metall.
,
38
, pp.
1151
1162
.
28.
Li
,
J.
,
Papadopoulos
,
C.
, and
Xu
,
J. M.
,
1999
, “
Highly-Ordered Carbon Nanotube Arrays for Electronics Applications
,”
Appl. Phys. Lett.
,
75
, pp.
367
369
.
29.
Paris, P. C., and Sih, G. C., 1965, “Stress Analysis of Cracks in Fracture Toughness Testing and Its Applications,” American Society of Testing and Materials, Philadelphia, PA, ASTM STP 381, pp. 30–83.
30.
Xia
,
Z.
,
Curtin
,
W. A.
, and
Sheldon
,
B. W.
,
2004
, “
A New Method to Evaluate the Fracture Toughness of Thin Films
,” Acta Mater., in press.
31.
Xia
,
Z.
, and
Curtin
,
W. A.
,
2001
, “
Life Prediction of Titanium MMCs Under Low-Cycle Fatigue
,”
Acta Mater.
,
49
, pp.
1633
1646
.
32.
Xu
,
X. P.
, and
Needleman
,
A.
,
1993
, “
Void Nucleation by Inclusion Debounding in a Crystal Matrix
,”
Mod. Sim. Matl. Sci. Eng.
,
1
, pp.
111
132
.
33.
Maniwa
,
Y.
,
Fujiwara
,
R.
,
Kira
,
H.
,
Tou
,
H.
,
Kataura
,
H.
,
Suzuki
,
S.
,
Achiba
,
Y.
,
Nishibori
,
E.
,
Takata
,
M.
,
Sakata
,
M.
,
Fujiwara
,
A.
, and
Suematsu
,
H.
,
2001
, “
Thermal Expansion of Single-Walled Carbon Nanotube (SWNT) Bundles: X-Ray Diffraction Studies
,” Phys. Rev. B, 64, pp.
34.
O’Day
,
M. P.
, and
Curtin
,
W. A.
,
2002
, “
Failure of Crossply Ceramic-Matrix Composites
,”
J. Am. Ceram. Soc.
,
85
, pp.
241
102
–1–3.
You do not currently have access to this content.