Experimental investigations have been performed to understand the effects of prior loading on the creep and stress relaxation behavior of an amorphous polymer (polyphenylene oxide) and a semi-crystalline polymer (high density polyethylene) at room temperature. Of particular interest was the positioning of creep and relaxation tests on the unloading segment of stress-strain curves for tensile and compressive loading. The data was found to be quite unlike that obtained in typical tests performed on the loading segment; i.e., with no unloading history. Specifically, in relaxation tests, rather than registering a monotonic drop, the stress first increases then decreases. The rate of change of stress, therefore, is initially positive and then becomes negative. Similarly, in creep tests, the strain was found to decrease at first, and then began to increase. This has been labeled as rate-reversal in the context of relaxation and creep test data, and, furthermore, the test point has been found to influence the stress-time and strain-time data, respectively. In relaxation, for instance, at large strain values, the initial increase in stress is considerably smaller than the subsequent drop and the rate reversal occurs very rapidly. Conversely, at smaller strain values, the initial increase in stress dominates and the rate reversal may occur only after several hours. Analogous changes are observed during creep as tests are performed at lower stress values. Preliminary attempts at modeling the aforementioned creep and relaxation behavior have been made by modifying the existing formulation of the viscoplasticity theory based on overstress, which is a constitutive state-variable based model. A modified, single-element standard linear solid serves as a suitable descriptor of the model. Linking of two elements in series has shown some promise towards the modeling of the rate-reversal behavior. Experimental data and results of preliminary simulations are presented in this study.
Skip Nav Destination
Article navigation
October 2006
Research Papers
Loading History Effects on the Creep and Relaxation Behavior of Thermoplastics
Fazeel Khan
Fazeel Khan
Department of Mechanical and Manufacturing Engineering, 145 Kreger Hall,
Miami University
, Oxford, OH 45056
Search for other works by this author on:
Fazeel Khan
Department of Mechanical and Manufacturing Engineering, 145 Kreger Hall,
Miami University
, Oxford, OH 45056J. Eng. Mater. Technol. Oct 2006, 128(4): 564-571 (8 pages)
Published Online: May 30, 2006
Article history
Received:
August 24, 2005
Revised:
May 30, 2006
Citation
Khan, F. (May 30, 2006). "Loading History Effects on the Creep and Relaxation Behavior of Thermoplastics." ASME. J. Eng. Mater. Technol. October 2006; 128(4): 564–571. https://doi.org/10.1115/1.2345448
Download citation file:
Get Email Alerts
Evaluation of Machine Learning Models for Predicting the Hot Deformation Flow Stress of Sintered Al–Zn–Mg Alloy
J. Eng. Mater. Technol (April 2025)
Blast Mitigation Using Monolithic Closed-Cell Aluminum Foam
J. Eng. Mater. Technol (April 2025)
Irradiation Damage Evolution Dependence on Misorientation Angle for Σ 5 Grain Boundary of Nb: An Atomistic Simulation-Based Study
J. Eng. Mater. Technol (July 2025)
Related Articles
Amorphous and Semicrystalline Solid Polymers: Experimental and Modeling Studies of Their Inelastic Deformation Behaviors
J. Eng. Mater. Technol (January,2006)
Strain Rate Dependence and Short-Term Relaxation Behavior of a Thermoset Polymer at Elevated Temperature: Experiment and Modeling
J. Pressure Vessel Technol (June,2009)
Modeling Viscoelastic and Viscoplastic Behavior of High Density Polyethylene (HDPE)
J. Eng. Mater. Technol (October,2006)
The Rate (Time)-Dependent Mechanical Behavior of the PMR-15 Thermoset Polymer at 316 ° C : Experiments and Modeling
J. Pressure Vessel Technol (August,2010)
Related Proceedings Papers
Related Chapters
Polycrystalline Simulations of In-Reactor Deformation of Zircaloy-4 Cladding Tubes during Nominal Operating Conditions
Zirconium in the Nuclear Industry: 20th International Symposium
Back Matter
Analysis of ASME Boiler, Pressure Vessel, and Nuclear Components in the Creep Range
Advanced PWR Cladding Development through Extensive In-Reactor Testing
Zirconium in the Nuclear Industry: 20th International Symposium