A new surface modification process was developed to introduce compressive residual stresses at the surface of components. In this process, instead of oil droplets a high-velocity cavitation jet (cloud of oil bubbles) impinges on the surface of the component to be peened. The impact pressure generated during implosion of cavitation bubbles causes severe plastic deformation at the surface. Consequently, beneficial compressive stresses are developed at the surface. In order to find the potential of this process, aluminum alloy AA6063-T6 specimens were peened at a constant cavitation number with various nozzle-traveling velocities. Residual stress induced by oil jet cavitation peening was measured using X-ray diffraction. Oil cavitation jet peening results in a smooth and hard surface. The developed compressive residual stresses at the peened surface are about 52%, 42%, and 35% of yield strength in samples for peened at nozzle traveling velocities of 0.05mms, 0.10mms, and 0.15mms, respectively.

1.
Hommond
,
D. W.
, and
Meguid
,
A. S.
, 1990, “
Crack Propagation in the Presence of Shot Peening Residual Stresses
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
37
, pp.
373
387
.
2.
Tonshoff
,
H. K.
,
Kroos
,
F.
, and
Marzenell
,
C.
, 1997, “
High Pressure Water Peening—A New Mechanical Surface Strengthening Process
,”
CIRP Ann.
0007-8506,
16
, pp.
113
116
.
3.
Soyama
,
H.
,
Park
,
J. D.
, and
Saka
,
M.
, 2000, “
Use of Cavitation Jet for Introducing Compressive Residual Stress
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
, pp.
83
89
.
4.
Soyama
,
H.
,
Saito
,
K.
, and
Saka
,
M.
, 2002, “
Improvement of Fatigue Strength of Aluminum Alloy by Cavitation Shotless Peening
,”
ASME J. Eng. Mater. Technol.
0094-4289,
124
,
135
139
.
5.
Soyama
,
H.
, 2004, “
Introduction of Compressive Residual Stress Using a Cavitation Jet in Air
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
123
128
.
6.
Sahaya Grinspan
,
A.
, and
Gnanamoorthy
,
R.
, 2006, “
A Novel Surface Modification Technique for the Introduction Compressive Residual Stress and Preliminary Studies on Aluminum Alloy AA6063
,”
Surf. Coat. Technol.
0257-8972,
201
, pp.
1768
1775
.
7.
Daniewicz
,
S. R.
, and
Cummings
,
S. D.
, 1999, “
Characterization of a Water Peening Process
,”
ASME J. Eng. Mater. Technol.
0094-4289,
121
, pp.
336
340
.
8.
Odhiambo
,
D.
, and
Soyama
,
H.
, 2003, “
Cavitation Shot Less Peening for Improvement of Fatigue Strength of Carbonized Steel
,”
Int. J. Fatigue
0142-1123,
25
, pp.
1217
1222
.
9.
Qin
,
M.
,
Ju
,
D. Y.
, and
Oba
,
R.
, 2006, “
Improvement on Process Capability of Water Cavitation Peening by Aeration
,”
Surf. Coat. Technol.
0257-8972,
200
, pp.
5364
5369
.
10.
Qin
,
M.
,
Ju
,
D. Y.
, and
Oba
,
R.
, 2006, “
Investigation of Influence the Incidence Angle on the Process Capability of Water Cavitation Peening
,”
Surf. Coat. Technol.
0257-8972,
201
, pp.
1409
1413
.
11.
Sahaya Grinspan
,
A.
, and
Gnanamoorthy
,
R.
, 2006, “
Surface Modification by Oil Jet Peening in Al Alloys, AA 6063-T6 and AA 6061-T4: Residual Stress and Hardness
,”
Appl. Surf. Sci.
0169-4332,
253
, pp.
989
996
.
12.
Sahaya Grinspan
,
A.
, and
Gnanamoorthy
,
R.
, 2006, “
Surface Modification by Oil Jet Peening in Al Alloys, AA 6063-T6 and AA 6061-T4: Surface Morphology, Erosion and Mass Loss
,”
Appl. Surf. Sci.
0169-4332,
253
, pp.
997
1006
.
13.
Sahaya Grinspan
,
A.
, and
Gnanamoorthy
,
R.
, 2007, “
Surface Modification and Fatigue Behavior of High Pressure Oil Jet Peened Medium Carbon Steel, AISI 1040
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
, pp.
1
6
.
14.
Sahaya Grinspan
,
A.
, and
Gnanamoorthy
,
R.
, “
Structure of Oil Cavitation Jet and Cavitation jet Erosion of Aluminum Alloy, AA 6063-T6
,” unpublished results.
15.
Peyre
,
P.
,
Fabbro
,
R.
,
Merrien
,
P.
, and
Lieurada
,
H. P.
, 1996, “
Laser Shock Processing of Aluminum Alloys: Application to High Cycle Fatigue Behavior
,”
Mater. Sci. Eng., A
0921-5093,
210
, pp.
102
113
.
16.
Kunaporn
,
S.
,
Ramulu
,
M.
,
Jenkins
,
M. G.
, and
Hashish
,
M.
, 2004, “
Residual Stress Induced by Water Jet Peening: A Finite Element Analysis
,”
ASME J. Pressure Vessel Technol.
0094-9930,
126
, pp.
333
340
.
17.
Montross
,
C. S.
,
Wei
,
T.
,
Te
,
L.
,
Clark
,
G.
, and
Mai
,
Y. W.
, 2002, “
Laser Shock Processing and Its Effects on Microstructure and Properties of Metal Alloys: A Review
,”
Int. J. Fatigue
0142-1123,
24
, pp.
1021
1036
.
18.
Sun
,
Z.
,
Kang
,
X. Q.
, and
Wang
,
X. H.
, 2005, “
Experimental System of Cavitation Erosion With Water Jet
,”
Mater. Des.
0264-1275,
26
, pp.
59
63
.
19.
Kunaporn
,
S.
,
Ramulu
,
M.
,
Hashish
,
M.
, and
Hopkins
,
J.
, 2001, “
Ultra High-Pressure Water Jet Peening, Patr1: Surface Texture
,”
WJTA American Water Jet Conf.
, Aug. 18–21, Paper No. 25.
20.
Dorr
,
T.
,
Hilpert
,
M.
,
Beckmerhagen
,
P.
,
Kiefer
,
A.
, and
Wagner
,
L.
, 1999, “
Influence of Shot Peening on Fatigue Performance on High Strength Aluminum and Magnesium Alloys
,”
7th ICSP, American Shot Peening Society
, pp.
153
148
.
You do not currently have access to this content.