This paper discusses the dependence of the mechanical properties and microstructure of sintered hydroxyapatite (HA) on the sintering temperature and pressure. A set of specimens was prepared from as-received HA powder and sintered by using a spark plasma sintering (SPS) process. The sintering pressures were set at 22.3MPa, 44.6MPa, and 66.9MPa, and sintering was performed in the temperature range from 800°Cto1000°C at each pressure. Mechanisms underlying the interrelated temperature-mechanical and pressure-mechanical properties of dense HA were investigated. The effects of temperature and pressure on the flexural strength, Young’s modulus, fracture toughness, relative density, activation energy, phase stability, and microstructure were assessed. The relative density and grain size increased with an increase in the temperature. The flexural strength and Young’s modulus increased with an increase in the temperature, giving maximum values of 131.5MPa and 75.6GPa, respectively, at a critical temperature of 950°C and 44.6MPa, and the fracture toughness was 1.4MPam12 at 1000°C at 44.6MPa. Increasing the sintering pressure led to acceleration of the densification of HA.

1.
Murugan
,
R.
, and
Ramakrishna
,
S.
, 2005, “
Development of Nanocomposites for Bone Grafting
,”
Compos. Sci. Technol.
0266-3538,
65
, pp.
2385
2406
.
2.
Kothapalli
,
C.
,
Wei
,
M.
,
Vasiliev
,
A.
, and
Shaw
,
M. T.
, 2004, “
Influence of Temperature and Concentration on the Sintering Behavior and Mechanical Properties of Hydroxyapatite
,”
Acta Mater.
1359-6454,
52
, pp.
5655
5663
.
3.
Muralithran
,
G.
, and
Ramesh
,
S.
, 2000, “
The Effect of Sintering Temperature on the Properties of Hydroxyapatite
,”
Ceram. Int.
0272-8842,
26
, pp.
221
230
.
4.
Nygren
,
M.
, and
Shen
,
Z. J.
, 2003, “
On the Preparation of Bio-, Nano- and Structural Ceramics and Composites by Spark Plasma Sintering
,”
Solid State Sci.
1293-2558,
5
, pp.
125
131
.
5.
Liu
,
H. S.
,
Chin
,
T. S.
,
Lai
,
L. S.
,
Chiu
,
S. Y.
,
Chung
,
K. H.
,
Chang
,
C. S.
, and
Lui
,
M. T.
, 1997, “
Hydroxyapatite Synthesized by a Simplified Hydrothermal Method
,”
Ceram. Int.
0272-8842,
23
, pp.
19
25
.
6.
Gu
,
Y. W.
,
Loh
,
N. H.
,
Khor
,
K. A.
,
Tor
,
S. B.
, and
Cheang
,
P.
, 2002, “
Spark Plasma Sintering of Hydroxyapatite Powders
,”
Biomaterials
0142-9612,
23
, pp.
37
43
.
7.
Shi
,
D.
, and
Jang
,
G.
, 2002, “
The Effect of Structural Characteristics on the In Vitro Bioactivity of Hydroxyapatite
,”
J. Biomed. Mater. Res.
0021-9304,
63
, pp.
71
78
.
8.
Kobayashi
,
S.
,
Kawai
,
W.
, and
Wakayama
,
S.
, 2006, “
The Effect of Pressure During Sintering on the Strength and the Fracture Toughness of Hydroxyapatite Ceramics
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
17
, pp.
1089
1093
.
9.
Liao
,
C. J.
,
Lin
,
F. H.
,
Chen
,
K. S.
, and
Sun
,
J. S.
, 1999, “
Thermal Decomposition and Reconstitution of Hydroxyapatite in Air Atmosphere
,”
Biomaterials
0142-9612,
20
, pp.
1807
1813
.
10.
Dyshlovenko
,
S.
,
Pawlowski
,
L.
,
Pateyron
,
B.
,
Smurov
,
I.
, and
Harding
,
J. H.
, 2006, “
Modelling of Plasma Particle Interactions and Coating Growth for Plasma Spraying of Hydroxyapatite
,”
Surf. Coat. Technol.
0257-8972,
200
, pp.
3757
3769
.
11.
Locardi
,
B.
,
Pazzaglia
,
U. E.
,
Gabbi
,
C.
, and
Profilo
,
B.
, 1993, “
Thermal Behaviour of Hydroxyapatite Intended for Medical Applications
,”
Biomaterials
0142-9612,
14
, pp.
437
441
.
12.
Juang
,
H. Y.
, and
Hon
,
M. H.
, 1996, “
Effect of Calcination on Sintering of Hydroxyapatite
,”
Biomaterials
0142-9612,
17
, pp.
2059
2064
.
13.
Akao
,
M.
,
Aoki
,
H.
, and
Kato
,
K.
, 1981, “
Mechanical Properties of Sintered Hydroxyapatite for Prosthetic Applications
,”
J. Mater. Sci.
0022-2461,
16
, pp.
809
812
.
14.
Rachman
,
C.
, 2007, “
Densification Mechanisms in Spark Plasma Sintering of Nanocrystalline Ceramics
,”
Mater. Sci. Eng., A
0921-5093,
443
, pp.
25
32
.
15.
He
,
Z. M.
,
Ma
,
J.
, and
Wang
,
C.
, 2005, “
Constitutive Modeling of the Densification and the Grain Growth of Hydroxyapatite Ceramics
,”
Biomaterials
0142-9612,
26
, pp.
1613
1621
.
16.
German
,
R. M.
, 1994,
Powder Metallurgy Science
,
Metal Powder Industries Federation
,
Princeton, NJ
, pp.
242
299
.
17.
Jarcho
,
M.
,
Bolen
,
C. H.
,
Thomas
,
M. B.
,
Bobick
,
J.
,
Kay
,
J. F.
, and
Doremus
,
R. H.
, 1976, “
Hydroxylapatite Synthesis and Characterization in Dense Polycrystalline Form
,”
J. Mater. Sci.
0022-2461,
11
, pp.
2027
2035
.
18.
Raynaud
,
S.
,
Champion
,
E.
, and
Bernache-Assollant
,
D.
, 2002, “
Calcium Phosphate Apatites With Variable Ca∕P Atomic Ratio II: Calcination and Sintering
,”
Biomaterials
0142-9612,
23
, pp.
1073
1080
.
19.
Case
,
E. D.
, and
Smyth
,
J. R.
, 1980, “
Grain Size Dependence of Microcrack Initiation in Brittle Materials
,”
J. Mater. Sci.
0022-2461,
15
, pp.
149
153
.
20.
Rice
,
R. W.
, 1994, “
Possible Effects of Elastic Anisotropy on Mechanical Properties of Ceramics
,”
J. Mater. Sci.
0022-2461,
13
, pp.
1261
1266
.
21.
Sakaida
,
Y.
, and
Tanaka
,
K.
, 2003, “
Evaluation of Fracture Toughness of Porous Ceramics
,”
JSME Int. J., Ser. A
1340-8046,
46
, pp.
30
39
.
22.
Kobayashi
,
S.
, and
Kawai
,
W.
, 2007, “
Development of Carbon Nanofiber Reinforced Hydroxyapatite With Enhanced Mechanical Properties
,”
Composites, Part A
1359-835X,
38
, pp.
114
123
.
23.
Khor
,
K. A.
,
Gu
,
Y. W.
,
Cheang
,
P.
, and
Boey
,
F. C.
, 2003, “
The Characteristics and Properties of Hydroxyapatite Prepared by Spark Plasma Sintering (SPS)
,”
Key Eng. Mater.
1013-9826,
240–242
, pp.
497
500
.
24.
Case
,
E. D.
,
Smith
,
I. O.
, and
Baumann
,
M. J.
, 2005, “
Microcracking and Porosity in Calcium Phosphates and the Implications for Bone Tissue Engineering
,”
Mater. Sci. Eng., A
0921-5093,
390
, pp.
246
254
.
25.
Elliott
,
J. C.
, 1994,
Structure and Chemistry of the Apatites and Other Calcium Orthophosphates
,
Elsevier Science
,
Amsterdam
, pp.
29
42
.
You do not currently have access to this content.