Abstract

In this paper, the multiscale thermodynamic basis of the plastic potential theory is addressed within the irreversible thermodynamic framework with internal variables by Rice (1971, “Inelastic Constitutive Relations for Solids: An Internal Variable Theory and Its Application to Metal Plasticity,” J. Mech. Phys. Solids, 19, pp. 433–455). It is shown that the condition of free or complementary energy equivalence leads to the full equivalence of the microscale and macroscale thermodynamic formulations as soon as the multiscale kinematic relation is prescribed. The condition of dissipation equivalence by Rice is not an independent condition. The thermodynamic significance and counterparts of plastic potentials and multipliers, Koiter’s and Mises’ flow rules, the intrinsic time in the work of Valanis (1975, “On the Foundations of the Endochronic Theory of Viscoplasticity,” Arch. Mech., 27, pp. 857–868), the viscoplasticity, and the J2 plasticity can all be revealed and recovered within the multiscale thermodynamic framework.

References

1.
Koiter
,
W. T.
, 1953, “
Stress-Strain Relation, Uniqueness and Variational Theorems for Elastic-Plastic Materials With a Singular Yield Surface
,”
Q. Appl. Math.
,
11
, pp.
350
354
. 0033-569X
2.
Drucker
,
D. C.
, 1959, “
A Definition of Stable Inelastic Material
,”
ASME J. Appl. Mech.
0021-8936,
26
, pp.
101
106
.
3.
Il’yushin
,
A. A.
, 1961, “
On a Postulate of Plasticity
,”
J. Appl. Math. Mech.
0021-8928,
25
, pp.
746
750
.
4.
Moreau
,
J. J.
, 1970, “
Sur les lois de Frottement, de Viscosite et de Plasticite
,”
Acad. Sci., Paris, C. R.
0001-4036,
271
, pp.
608
611
.
5.
Ziegler
,
H.
, 1977,
An Introduction to Thermomechanics
,
North-Holland
,
Amsterdam
.
6.
Houlsby
,
G. T.
, and
Puzrin
,
A. M.
, 2000, “
A Thermomechanical Framework for Constitutive Models for Rate-Independent Dissipative Materials
,”
Int. J. Plast.
0749-6419,
16
, pp.
1017
1047
.
7.
Rice
,
J. R.
, 1971, “
Inelastic Constitutive Relations for Solids: An Integral Variable Theory and Its Application to Metal Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
19
, pp.
433
455
.
8.
Yang
,
Q.
,
Chen
,
X.
, and
Zhou
,
W. Y.
, 2006, “
Multiscale Thermodynamic Significance of the Scale Invariance Approach in Continuum Inelasticity
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
, pp.
125
132
.
9.
Aifantis
,
E. C.
, 1995, “
From Micro- to Macro-Plasticity: The Scale Invariance Approach
,”
ASME J. Eng. Mater. Technol.
0094-4289,
117
, pp.
352
355
.
10.
Valanis
,
K. C.
, 1975, “
On the Foundations of the Endochronic Theory of Viscoplasticity
,”
Arch. Mech.
0373-2029,
27
, pp.
857
868
.
11.
Valanis
,
K. C.
, 1971, “
A Theory of Viscoplasticity Without a Yield Surface, Part I. General Theory
,”
Arch. Mech.
0373-2029,
23
, pp.
517
533
.
12.
Rice
,
J. R.
, 1975, “
Continuum Mechanics and Thermodynamics of Plasticity in Relation to Microscale Deformation Mechanisms
,”
Constitutive Equations in Plasticity
,
A. S.
Argon
, ed.,
MIT
,
Cambridge, MA
, pp.
23
79
.
13.
Edelen
,
D. G. B.
, 1972, “
A Nonlinear Onsager Theory of Irreversibility
,”
Int. J. Eng. Sci.
0020-7225,
10
, pp.
481
490
.
14.
Edelen
,
D. G. B.
, 1973, “
Asymptotic Stability, Onsager Fluxes and Reaction Kinetics
,”
Int. J. Eng. Sci.
0020-7225,
11
, pp.
819
839
.
15.
Onsager
,
L.
, 1931, “
Reciprocal Relations in Irreversible Processes, I
,”
Phys. Rev.
0031-899X,
37
, pp.
405
406
;
Onsager
,
L.
, 1931, “
Reciprocal Relations in Irreversible Processes, II
,”
Phys. Rev.
0031-899X
38
, pp.
2265
2279
.
You do not currently have access to this content.