In this paper, AZ61 magnesium alloy composites containing nanoalumina and micron-sized copper particulates are synthesized using the technique of disintegrated melt deposition followed by hot extrusion. The simultaneous addition of nano-Al2O3 and copper particulates led to an overall improvement in both microstructural characteristics in terms of distribution and morphology of secondary phases and mechanical response of AZ61. The presence of nanoalumina particulates broke down and dispersed the secondary phase Mg17Al12. The 0.2% yield strength increased from 216 MPa to 274 MPa. The ductility increased from 8.4% to 9.3% in the case of the AZ61-1.5Al2O3 sample. The results of aging heat treatment in the case of the AZ61-1.5Al2O3-1Cu sample showed significant improvement in both tensile strength, ductility, and work of fracture (54% increment). An attempt is made to correlate the tensile response of composites with their microstructural characteristics.

References

1.
Stanford
,
N.
,
Geng
,
J.
,
Chun
,
Y. B.
,
Davies
,
C. H. J.
,
Nie
,
J. F.
, and
Barnett
,
M. R.
,
2012
, “
Effect of Plate-Shaped Particle Distributions on the Deformation Behaviour of Magnesium Alloy AZ91 in Tension and Compression
,”
Acta Mater.
,
60
, pp.
218
228
.10.1016/j.actamat.2011.10.001
2.
Uematsu
,
Y.
,
Tokaji
,
K.
, and
Matsumoto
,
M.
,
2009
, “
Effect of Aging Treatment on Fatigue Behaviour in Extruded AZ61 and AZ80 Magnesium Alloys
,”
Mater. Sci. Eng., A
,
517
, pp.
138
145
.10.1016/j.msea.2009.03.066
3.
Dmitry
,
O.
,
George
,
R.
,
Torbjorn
,
T. L.
,
Mikhail
,
P.
, and
Yuri
,
E.
,
2011
, “
Improvement of Mechanical Properties of Magnesium Alloy ZK60 by Integrated Extrusion and Equal Channel Angular Pressing
,”
Acta Mater.
,
59
, pp.
375
385
.10.1016/j.actamat.2010.09.043
4.
Nguyen
,
Q. B.
,
Gupta
,
M.
, and
Srivatsan
,
T. S.
,
2009
, “
On the Role of Nano-alumina Particulate Reinforcements in Enhancing the Oxidation Resistance of Magnesium Alloy AZ31B
,”
Mater. Sci. Eng., A
,
500
, pp.
233
237
.10.1016/j.msea.2008.09.050
5.
Chang
,
S. Y.
, and
Kim
,
Y. L.
,
2008
, “
Effect of Aging Treatment on Microstructural and Mechanical Characteristics of PEO Coatings on Mg-Al Alloy
,”
J. Mater. Sci. Technol.
,
24
, pp.
37
40
.
6.
Deng
,
K. K.
,
Wu
,
K.
,
Wang
,
X. J.
,
Wu
,
Y. W.
,
Hu
,
X. S.
,
Zheng
,
M. Y.
,
Gan
,
W. M.
, and
Brokmeier
,
H. G.
,
2010
, “
Microstructure Evolution and Mechanical Properties of a Particulate Reinforced Magnesium Matrix Composites Forged at Elevated Temperatures
,”
Mater. Sci. Eng., A
,
527
, pp.
1630
1635
.10.1016/j.msea.2009.10.053
7.
Han
,
L.
,
Hu
,
H.
, and
Northwood
,
D. O.
,
2008
, “
Effect of Ca Additions on Microstructure and Microhardness of an As-Cast Mg–5.0 wt.% Al Alloy
,”
Mater. Lett.
,
62
, pp.
381
384
.10.1016/j.matlet.2007.05.047
8.
Trojanová
,
Z.
,
Gärtnerová
, V
.
,
Jäger
,
A.
,
Námešný
,
A.
,
Chalupová
,
M.
,
Palcěk
,
P.
, and
Luká
,
P.
,
2009
, “
Mechanical and Fracture Properties of an AZ91 Magnesium Alloy Reinforced by Si and SiC Particles
,”
Comp. Sci. Tech.
,
69
, pp.
2256
2264
.10.1016/j.compscitech.2009.06.016
9.
Tun
,
K. S.
, and
Gupta
,
M.
,
2007
, “
Improving Mechanical Properties of Magnesium Using Nano-Yttria Reinforcement and Microwave Assisted Powder Metallurgy Method
,”
Comp. Sci. Tech
,
67
, pp.
2657
2664
.10.1016/j.compscitech.2007.03.006
10.
Davis, J. R.,
1990
, “
Properties and Selection: Non-Ferrous Alloys and Special Purpose Materials
,”
ASM Metals Handbook
, Vol. 2, 10th ed., ASM International, Materials Park, OH, pp.
455
510
.
11.
Mendis
,
C. L.
,
Oh-ishi
,
K.
,
Kawamura
,
Y.
,
Honma
,
T.
,
Kamado
,
S.
, and
Hono
,
K.
,
2009
, “
Precipitation-Hardenable Mg–2.4Zn–0.1Ag–0.1Ca–0.16Zr (at.%) Wrought Magnesium Alloy
,”
Acta Mater.
,
57
, pp.
749
760
.10.1016/j.actamat.2008.10.033
12.
Levi
,
G.
,
Avraham
,
S.
,
Zilberov
,
A.
, and
Bamberger
,
M.
,
2006
, “
Solidification, Solution Treatment and Age Hardening of a Mg–1.6wt.%Ca–3.2wt.%Zn Alloy
,”
Acta Mater.
,
54
, pp.
523
530
.10.1016/j.actamat.2005.09.023
13.
Celotto
,
S.
, and
Bastow
,
T. J.
,
2001
, “
Study of Precipitation in Aged Binary Mg–Al and Ternary Mg–Al–Zn Alloys Using 27Al NMR Spectroscopy
,”
Acta Mater.
,
49
, pp.
41
51
.10.1016/S1359-6454(00)00305-0
14.
Hassan
,
S. F.
, and
Gupta
,
M.
,
2003
, “
Development of High Strength Magnesium Copper Based Hybrid Composites With Enhanced Tensile Properties
,”
Mater. Sci. Tech.
,
19
, pp.
253
259
.10.1179/026708303225009346
15.
Nguyen
,
Q. B.
, and
Gupta
,
M.
,
2010
, “
Enhancing Mechanical Response of AZ31B Using Cu + Nano-Al2O3 Addition
,”
Mater. Sci. Eng., A
,
527
, pp.
1411
1416
.10.1016/j.msea.2009.11.002
16.
Ho
,
K. F.
,
Gupta
,
M.
, and
Srivatsan
,
T. S.
,
2004
, “
The Mechanical Behavior of Magnesium Alloy AZ91 Reinforced With Fine Copper Particulates
,”
Mater. Sci. Eng., A
,
369
, pp.
302
308
.10.1016/j.msea.2003.11.011
17.
Nguyen
,
Q. B.
, and
Gupta
,
M.
,
2007
, “
Increasing Significantly the Failure Strain and Work of Fracture of Solidification Processed AZ31B Using Nano-Al2O3 Particulates
,”
J. Alloys Compd.
,
459
, pp.
244
250
.10.1016/j.jallcom.2007.05.038
18.
Ugandhar
,
S.
,
Gupta
,
M.
, and
Sinha
,
S. K.
,
2006
, “
Enhancing Strength and Ductility of Mg/SiC Composites Using Recrystallization Heat Treatment
,”
Compos. Struct.
,
72
, pp.
266
272
.10.1016/j.compstruct.2004.11.010
19.
Han
,
Q.
, and
Dunand
,
D. C.
,
2000
, “
Microstructure and Mechanical Properties of Magnesium Containing High Volume Fractions of Yttria Dispersoids
,”
Mater. Sci. Eng., A
,
277
, pp.
297
304
.10.1016/S0921-5093(99)00074-X
20.
Shackelford
,
J. F.
,
2009
,
Introduction to Materials Science for Engineers
,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
21.
Ashby
,
M. F.
,
1981
,
Progress in Material Science: Chalmers Anniversary Volume
, Pergamon Press, Oxford, UK, pp.
1
25
.
22.
Dodd
,
B.
, and
Bai
,
Y.
,
1987
,
Ductile Fracture and Ductility
,
Academic
,
London
.
You do not currently have access to this content.