The deformation of substrate caused by laser scanning pattern during direct laser fabrication (DLF) is ignored in spite of its importance to the final dimension accuracy. In this paper, in order to investigate the effect of deposition pattern on the deformation of substrate during DLF, eight laser scanning patterns are designed to build a cylinder on an asymmetrical IN718 arc substrate, respectively. Deformations of substrates along x, y, z-directions after DLF and heat treatment are compared and discussed. Meanwhile, the maximum displacement in z-direction of each substrate is calculated. Besides, a modified temperature gradient mechanism (TGM) is introduced to understand deformations of substrates under different laser scanning patterns. The results show that the deformation of substrate along z-direction is much larger than other two directions for all scanning patterns. The deformation of substrate strongly depends on x- and y-directional dimension of the substrate when a symmetrical build is fabricated. Compared with contour-offset scanning patterns, raster scanning patterns have distinct directional effect on deformations of substrates. Especially, the deformations of substrates caused by laser fabrication are permanent. In order to improve the fabrication efficiency, to and fro laser scan along the short dimension direction is preferred during DLF for generating the minimum deformation to substrate and reducing unnecessary movements of the working table.

References

1.
Blackwell
,
P. L.
,
2005
, “
The Mechanical and Microstructural Characteristics of Laser-Deposited IN718
,”
J. Mater. Process. Technol.
,
170
, pp.
240
246
.10.1016/j.jmatprotec.2005.05.005
2.
Luo
,
T.
, and
Zhong
,
Y.
,
2012
, “
Potential Application of Laser Solid Forming Technology for Fabrication of Breeding Blanket
,”
Fusion Eng. Des.
,
87
, pp.
128
133
.10.1016/j.fusengdes.2011.11.006
3.
Amano
,
R. S.
, and
Rohatgi
,
P. K.
,
2011
, “
Laser Engineered Net Shaping Process for SAE 4140 Low Alloy Steel
,”
Mater. Sci. Eng. A
,
528
, pp.
6680
6693
.10.1016/j.msea.2011.05.036
4.
Heralić
,
A.
,
Christiansson
,
A.-K.
,
Ottosson
,
M.
, and
Lennartson
,
B.
,
2010
, “
Increased Stability in Laser Metal Wire Deposition Through Feedback From Optical Measurements
,”
Opt. Lasers Eng.
,
48
, pp.
478
485
.10.1016/j.optlaseng.2009.08.012
5.
Peng
,
L.
,
Shengqin
,
J.
,
Xiaoyan
,
Z.
,
Qianwu
,
H.
, and
Weihao
,
X.
,
2007
, “
Direct Laser Fabrication of Thin-Walled Metal Parts Under Open-Loop Control
,”
Int. J. Mach. Tools Manuf.
,
47
, pp.
996
1002
.10.1016/j.ijmachtools.2006.06.017
6.
Li
,
X. C.
,
Stampfl
,
J.
, and
Prinz
,
F. B.
,
2000
, “
Mechanical and Thermal Expansion Behavior of Laser Deposited Metal Matrix Composites of Invar and TiC
,”
Mater. Sci. Eng. A
,
282
, pp.
86
90
.10.1016/S0921-5093(99)00781-9
7.
Klingbeil
,
N. W.
,
Beuth
,
J. L.
,
Chin
,
R. K.
, and
Amon
,
C. H.
,
2002
, “
Residual Stress-Induced Warping in Direct Metal Solid Free Form Fabrication
,”
Int. J. Mech. Sci.
,
44
, pp.
57
77
.10.1016/S0020-7403(01)00084-4
8.
Moat
,
R. J.
,
Pinkerton
,
A. J.
,
Li
,
L.
,
Withers
,
P. J.
, and
Preuss
,
M.
,
2011
, “
Residual Stresses in Laser Direct Metal Deposited Waspaloy
,”
Mater. Sci. Eng. A
,
528
, pp.
2288
2298
.10.1016/j.msea.2010.12.010
9.
Yu
,
J.
,
Lin
,
X.
,
Ma
,
L.
,
Wang
,
J.
,
Fu
,
X.
,
Chen
,
J.
, and
Huang
,
W.
,
2011
, “
Influence of Laser Deposition Patterns on Part Distortion, Interior Quality and Mechanical Properties by Laser Solid Forming (LSF)
,”
Mater. Sci. Eng. A
,
528
, pp.
1094
1104
.10.1016/j.msea.2010.09.078
10.
Rangaswamy
,
P.
,
Griffith
,
M. L.
,
Prime
,
M. B.
,
Holden
,
T. M.
,
Rogge
,
R. B.
,
Edwards
,
J. M.
, and
Sebring
,
R. J.
,
2005
, “
Residual Stresses in LENS® Components Using Neutron Diffraction and Contour Method
,”
Mater. Sci. Eng. A
,
399
, pp.
72
83
.10.1016/j.msea.2005.02.019
11.
Ma
,
L.
, and
Bin
,
H. Z.
,
2007
, “
Temperature and Stress Analysis and Simulation in Fractal Scanning-Based Laser Sintering
,”
Int. J. Adv. Manuf. Technol.
,
34
, pp.
898
903
.10.1007/s00170-006-0665-5
12.
Roberts
,
I. A.
,
Wang
,
C. J.
,
Esterlein
,
R.
,
Stanford
,
M.
, and
Mynors
,
D. J.
,
2009
, “
A Three-Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
49
, pp.
916
923
.10.1016/j.ijmachtools.2009.07.004
13.
Shen
,
H.
, and
Vollertsen
,
F.
,
2009
, “
Modelling of Laser Forming—An Review
,”
Comput. Mater. Sci.
,
46
, pp.
834
840
.10.1016/j.commatsci.2009.04.022
14.
Ueda
,
T.
,
Sentoku
,
E.
,
Wakimura
,
Y.
, and
Hosokawa
,
A.
,
2009
, “
Flattening of Sheet Metal by Laser Forming
,”
Opt. Lasers Eng.
,
47
, pp.
1097
1102
.10.1016/j.optlaseng.2009.07.002
15.
Shi
,
Y.
,
Yao
,
Z.
,
Shen
,
H.
, and
Hu
,
J.
,
2006
, “
Research on the Mechanisms of Laser Forming for the Metal Plate
,”
Int. J. Mach. Tools Manuf.
,
46
, pp.
1689
1697
.10.1016/j.ijmachtools.2005.09.016
You do not currently have access to this content.