Abstract

A combined experimental and micromechanics investigation is conducted on elevated-temperature thermal expansion of PTFE/PEEK polymer-matrix composite reinforced with randomly oriented short carbon fibers (CF) and graphite flakes (Gr). In the experimental phase of the study, PTFE/PEEK polymer blends with different amounts of PTFE and four-phase CF/Gr/PTFE/PEEK composites with different volume fractions of graphite flakes were made from compression molding. Scanning electron microscopy was performed to evaluate the microstructure of the PTFE/PEEK matrix and the composite, especially the interface, and the size and dispersion of the particles. X-ray diffraction (XRD) was conducted to provide morphological information on the semi-crystalline PTFE/PEEK matrix of the composite. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were carried out to determine transition temperatures and thermomechanical properties of the composite and its constituent phases at the elevated temperature. Thermal expansions of neat PTFE and neat PEEK, the PTFE/PEEK polymer matrix, and the CF/Gr/PTFE/PEEK composite were obtained with a thermal–mechanical analyzer (TMA) in a dilatometric mode. Coefficients of thermal expansion (CTEs) of the PTFE/PEEK matrix and its CF/Gr/PTFE/PEEK composite were then determined from 25 °C up to an elevated temperature 240 °C. To augment the experimental study, micromechanics analyses are also conducted to determine thermal expansion coefficients of the PTFE/PEEK matrix and the CF/GR/PTFE/PEEK composite. The micromechanics solutions elucidate individual roles of different composite constituents, contributions of individual constituent materials’ temperature-dependent thermal and mechanical properties, the importance of composite microstructure and morphology, and the issue of thermal–mechanical coupling on the thermal expansion behavior of the complex CF/Gr/PTFE/PEEK composite at high temperature.

References

1.
Voss
,
H.
, and
Friedrich
,
K.
,
1987
, “
On the Wear Behaviour of Short-Fibre-Reinforced Peek Composites
,”
Wear
,
116
(
1
), pp.
1
18
. 10.1016/0043-1648(87)90262-6
2.
Zhang
,
G.
,
Rasheva
,
Z.
, and
Schlarb
,
A. K.
,
2010
, “
Friction and Wear Variations of Short Carbon Fiber (SCF)/PTFE/Graphite (10 vol.%) Filled PEEK: Effects of Fiber Orientation and Nominal Contact Pressure
,”
Wear
,
268
(
7–8
), pp.
893
899
. 10.1016/j.wear.2009.12.001
3.
Rabinowicz
,
E.
,
1965
,
Friction and Wear of Materials
,
John Wiley and Sons
,
New York
.
4.
Hanchi
,
J.
, and
Eiss
,
N. S.
,
1997
, “
Dry Sliding Friction and Wear of Short Carbon-Fiber-Reinforced Polyetheretherketone (PEEK) at Elevated Temperatures
,”
Wear
,
203–204
, pp.
380
386
. 10.1016/S0043-1648(96)07347-4
5.
Kirby
,
R. K.
,
1956
, “
Thermal Expansion of Polytetrafluoroethylene (Teflon) From- 190° to +300 °C
,”
J. Res. Natl. Bur. Stand.
,
57
(
2
), pp.
91
94
. 10.6028/jres.057.010
6.
Araki
,
Y.
,
1965
, “
Thermal Expansion Coefficient of Polytetrafluoroethylene in the Vicinity of Its Glass Transition at About 400 °K
,”
J. Appl. Polym. Sci
,
9
(
2
), pp.
421
427
. 10.1002/app.1965.070090203
7.
Blumm
,
J.
,
Lindemann
,
A.
,
Meyer
,
M.
, and
Strasser
,
C.
,
2010
, “
Characterization of PTFE Using Advanced Thermal Analysis Techniques
,”
Int. J. Thermophys.
,
31
(
10
), pp.
1919
1927
. 10.1007/s10765-008-0512-z
8.
Farrow
,
G. J.
,
Wostenholm
,
G. H.
,
Darby
,
M. I.
, and
Yates
,
B.
,
1990
, “
Thermal Expansion of PEEK Between 80 and 470 K
,”
J. Mater. Sci. Lett.
,
9
(
6
), pp.
743
744
. 10.1007/BF00721820
9.
Choy
,
C. L.
,
Leung
,
W. P.
, and
Nakafuku
,
C.
,
1990
, “
Thermal Expansion of Poly(Ether-Ether-Ketone) (PEEK)
,”
J. Polym. Sci., Part B: Polym. Phys.
,
28
(
11
), pp.
1965
1977
. 10.1002/polb.1990.090281107
10.
Qu
,
S.
, and
Wang
,
S. S.
,
2018
, “
Elevated-Temperature Thermal and Mechanical Behavior of Carbon Fiber/Graphite/PTFE/PEEK Composite
,”
Proceedings of the American Society for Composites 33rd Technical Conference
,
Seattle, WA
,
Sept. 24–27
, Paper No. 141.
11.
Turner
,
P. S.
,
1942
, “
The Problem of Thermal-Expansion Stresses in Reinforced Plastics
,”
Natl. Advis. Comm. Aeronaut.
,
36
(
1
), pp.
1
23
.
12.
Christensen
,
R. M.
,
1994
,
Mechanics of Composite Materials
,
Dover Publication Inc.
,
Mineola, NY
.
13.
ASTM D7028-07
,
2007
,
Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA)
,
ASTM International, West Conshohocken
,
PA
, pp.
1
13
.
14.
Wu
,
X. L.
,
Huang
,
W. M.
,
Ding
,
Z.
,
Tan
,
H. X.
,
Yang
,
W. G.
, and
Sun
,
K. Y.
,
2014
, “
Characterization of the Thermoresponsive Shape-Memory Effect in Poly(Ether Ketone) (PEEK)
,”
J. Appl. Polym. Sci.
,
131
(
3
), p.
39844
. 10.1002/app.39844
15.
Mallick
,
P. K.
,
1989
,
Fibre-Reinforced Composites: Materials, Manufacturing and Design
,
CRC Press
,
Boca Raton, FL
.
16.
Ruland
,
W.
,
1961
, “
X-Ray Determination of Crystallinity and Diffuse Disorder Scattering
,”
Acta Crystallogr.
,
14
(
11
), pp.
1180
1185
. 10.1107/S0365110X61003429
17.
Ryland
,
A. L.
,
1958
, “
X-Ray Diffraction
,”
J. Chem. Educ.
,
35
(
2
), pp.
80
83
. 10.1021/ed035p80
18.
Blundell
,
D. J.
, and
Osborn
,
B. N.
,
1983
, “
The Morphology of Poly(Aryl-Ether-Ether-Ketone)
,”
Polymer
,
24
(
8
), pp.
953
958
. 10.1016/0032-3861(83)90144-1
19.
Rae
,
P. J.
, and
Dattelbaum
,
D. M.
,
2004
, “
The Properties of Poly(Tetrafluoroethylene) (PTFE) in Compression
,”
Polymer
,
45
(
22
), pp.
7615
7625
. 10.1016/j.polymer.2004.08.064
20.
Calleja
,
G.
,
Jourda
,
A.
,
Ameduri
,
B.
, and
Habas
,
J. P.
,
2013
, “
Where Is the Glass Transition Temperature of Poly(Tetrafluoroethylene)? A New Approach by Dynamic Rheometry and Mechanical Tests
,”
Eur. Polym. J.
,
49
(
8
), pp.
2214
2222
. 10.1016/j.eurpolymj.2013.04.028
21.
Allen
,
R.D.
,
1959
, “
The Thermal Expansion of Synthetic Graphites at Temperature Intervals Between 80 and 2000 °F
,” Progress Report No.30-20, NASA Contract No. NASw-6,
Jet Propulsion Laboratory, California Institute of Technology
,
Pasadena, CA
.
22.
Cost
,
J. R.
,
Janowski
,
K. R.
, and
Rossi
,
R. C.
,
1968
, “
Elastic Properties of Isotropic Graphite
,”
Philos. Mag.
,
17
(
148
), pp.
851
854
. 10.1080/14786436808223035
You do not currently have access to this content.