Abstract

This paper presents predictions of the mechanical response of sintered FGH96 Ni-based superalloy powder compacts at high temperatures, obtained by the analysis of 3D representative volume elements generated by both X-ray tomography and a virtual technique. The response of the material to a multi-axial state of stress/strain for porosities as large as 0.3 is explored, obtaining the yield surfaces and their evolution as well as scaling laws for both elastic and plastic properties. The two modeling approaches are found in good agreement. The sensitivity of the predictions to particle size, inter-particle friction, applied strain rate, and boundary conditions is also examined.

References

1.
Fedotov
,
A.
,
2017
, “
Analysis of the Adequacy and Selection of Phenomenological Models of the Elastic Properties of Porous Powder Materials
,”
J. Mater. Sci.
,
52
(
5
), pp.
2964
2973
. 10.1007/s10853-016-0593-1
2.
Pabst
,
W.
, and
Gregorová
,
E.
,
2015
, “
Critical Assessment 18: Elastic and Thermal Properties of Porous Materials–Rigorous Bounds and Cross-Property Relations
,”
Mater. Sci. Technol.
,
31
(
15
), pp.
1801
1808
. 10.1080/02670836.2015.1114697
3.
Pabst
,
W.
, and
Gregorová
,
E.
,
2014
, “
Young’s Modulus of Isotropic Porous Materials With Spheroidal Pores
,”
J. Eur. Ceram. Soc.
,
34
(
13
), pp.
3195
3207
. 10.1016/j.jeurceramsoc.2014.04.009
4.
Bruck
,
H. A.
,
Shabana
,
Y. M.
,
Xu
,
B.
, and
Laskis
,
J.
,
2007
, “
Evolution of Elastic Mechanical Properties During Pressureless Sintering of Powder-Processed Metals and Ceramics
,”
J. Mater. Sci.
,
42
(
18
), pp.
7708
7715
. 10.1007/s10853-007-1675-x
5.
Gregorová
,
E.
,
Pabst
,
W.
,
Nečina
,
V.
,
Uhlířová
,
T.
, and
Diblíková
,
P.
,
2019
, “
Young’s Modulus Evolution During Heating, Re-Sintering and Cooling of Partially Sintered Alumina Ceramics
,”
J. Eur. Ceram. Soc.
,
39
(
5
), pp.
1893
1899
. 10.1016/j.jeurceramsoc.2019.01.005
6.
Lambrinou
,
K.
,
Lauwagie
,
T.
,
Chalvet
,
F.
,
De Portu
,
G.
,
Tassini
,
N.
,
Patsias
,
S.
,
Lube
,
T.
, and
Van der Biest
,
O.
,
2007
, “
Elastic Properties and Damping Behaviour of Alumina–Alumina/Zirconia Laminates
,”
J. Eur. Ceram. Soc.
,
27
(
2–3
), pp.
1307
1311
. 10.1016/j.jeurceramsoc.2006.04.124
7.
Pabst
,
W.
,
Gregorová
,
E.
, and
Černý
,
M.
,
2013
, “
Isothermal and Adiabatic Young’s Moduli of Alumina and Zirconia Ceramics at Elevated Temperatures
,”
J. Eur. Ceram. Soc.
,
33
(
15–16
), pp.
3085
3093
. 10.1016/j.jeurceramsoc.2013.06.012
8.
Choren
,
J. A.
,
Heinrich
,
S. M.
, and
Silver-Thorn
,
M. B.
,
2013
, “
Young’s Modulus and Volume Porosity Relationships for Additive Manufacturing Applications
,”
J. Mater. Sci.
,
48
(
15
), pp.
5103
5112
. 10.1007/s10853-013-7237-5
9.
Hentschel
,
M.
, and
Page
,
N.
,
2006
, “
Elastic Properties of Powders During Compaction. Part 3: Evaluation of Models
,”
J. Mater. Sci.
,
41
(
23
), pp.
7902
7925
. 10.1007/s10853-006-0875-0
10.
Elruby
,
A.
, and
Nakhla
,
S.
,
2019
, “
Extending the Ramberg–Osgood Relationship to Account for Metal Porosity
,”
Metall. Mater. Trans. A
,
50
(
7
), pp.
3121
3131
. 10.1007/s11661-019-05236-7
11.
Siegkas
,
P.
,
Petrinic
,
N.
, and
Tagarielli
,
V.
,
2016
, “
Measurements and Micro-Mechanical Modelling of the Response of Sintered Titanium Foams
,”
J. Mech. Behav. Biomed. Mater.
,
57
, pp.
365
375
. 10.1016/j.jmbbm.2016.02.024
12.
Zacharopoulos
,
P.
, and
Tagarielli
,
V. L.
,
2017
, “
Numerical Modelling of the Mechanical Response of Cellular Solids Made From Sintered Titanium Powders
,”
Int. J. Solids Struct.
,
113–114
, pp.
241
254
. 10.1016/j.ijsolstr.2017.03.004
13.
Muñoz
,
S.
,
Castillo
,
S.
, and
Torres
,
Y.
,
2018
, “
Different Models for Simulation of Mechanical Behaviour of Porous Materials
,”
J. Mech. Behav. Biomed. Mater.
,
80
, pp.
88
96
. 10.1016/j.jmbbm.2018.01.026
14.
Pabst
,
W.
,
Uhlířová
,
T.
, and
Gregorová
,
E.
,
2018
, “
Shear and Bulk Moduli of Isotropic Porous and Cellular Alumina Ceramics Predicted From Thermal Conductivity Via Cross-Property Relations
,”
Ceram. Int.
,
44
(
7
), pp.
8100
8108
. 10.1016/j.ceramint.2018.01.254
15.
Zhu
,
W.
,
Blal
,
N.
,
Cunsolo
,
S.
, and
Baillis
,
D.
,
2017
, “
Micromechanical Modeling of Effective Elastic Properties of Open-Cell Foam
,”
Int. J. Solids Struct.
,
115
, pp.
61
72
. 10.1016/j.ijsolstr.2017.02.031
16.
Uhlířová
,
T.
, and
Pabst
,
W.
,
2019
, “
Conductivity and Young’s Modulus of Porous Metamaterials Based on Gibson-Ashby Cells
,”
Scr. Mater.
,
159
, pp.
1
4
. 10.1016/j.scriptamat.2018.09.005
17.
Schiffer
,
A.
,
Zacharopoulos
,
P.
,
Foo
,
D.
, and
Tagarielli
,
V. L.
,
2019
, “
A Coarse Model for the Multiaxial Elastic-Plastic Response of Ductile Porous Materials
,”
J. Appl. Mech.
,
86
(
8
), p.
081002
. 10.1115/1.4043439
18.
Madej
,
L.
,
2017
, “
Digital/Virtual Microstructures in Application to Metals Engineering—A Review
,”
Arch. Civ. Mech. Eng.
,
17
(
4
), pp.
839
854
. 10.1016/j.acme.2017.03.002
19.
Doroszko
,
M.
, and
Seweryn
,
A.
,
2017
, “
A New Numerical Modelling Method for Deformation Behaviour of Metallic Porous Materials Using X-Ray Computed Microtomography
,”
Mater. Sci. Eng. A
,
689
, pp.
142
156
. 10.1016/j.msea.2017.02.055
20.
Doroszko
,
M.
, and
Seweryn
,
A.
,
2015
, “
Numerical Modeling of the Tensile Deformation Process of Sintered 316L Based on Microtomography of Porous Mesostructures
,”
Mater. Des.
,
88
, pp.
493
504
. 10.1016/j.matdes.2015.09.006
21.
Singh
,
R.
,
Lee
,
P.
,
Lindley
,
T.
,
Kohlhauser
,
C.
,
Hellmich
,
C.
,
Bram
,
M.
,
Imwinkelried
,
T.
, and
Dashwood
,
R.
,
2010
, “
Characterization of the Deformation Behavior of Intermediate Porosity Interconnected Ti Foams Using Micro-Computed Tomography and Direct Finite Element Modeling
,”
Acta Biomater.
,
6
(
6
), pp.
2342
2351
. 10.1016/j.actbio.2009.11.032
22.
Fiedler
,
T.
,
Belova
,
I.
, and
Murch
,
G.
,
2012
, “
μ-CT-Based Finite Element Analysis on Imperfections in Open-Celled Metal Foam: Mechanical Properties
,”
Scr. Mater.
,
67
(
5
), pp.
455
458
. 10.1016/j.scriptamat.2012.06.002
23.
Zhu
,
X.
,
Ai
,
S.
,
Lu
,
X.
,
Cheng
,
K.
,
Ling
,
X.
,
Zhu
,
L.
, and
Liu
,
B.
,
2014
, “
Collapse Models of Aluminum Foam Sandwiches Under Static Three-Point Bending Based on 3D Geometrical Reconstruction
,”
Comput. Mater. Sci.
,
85
, pp.
38
45
. 10.1016/j.commatsci.2013.12.055
24.
Lee
,
D. J.
,
Jung
,
J. M.
,
Latypov
,
M. I.
,
Lee
,
B.
,
Jeong
,
J.
,
Oh
,
S. H.
,
Lee
,
C. S.
, and
Kim
,
H. S.
,
2015
, “
Three-Dimensional Real Structure-Based Finite Element Analysis of Mechanical Behavior for Porous Titanium Manufactured by a Space Holder Method
,”
Comput. Mater. Sci.
,
100
, pp.
2
7
. 10.1016/j.commatsci.2014.10.020
25.
Roy
,
S.
,
Khutia
,
N.
,
Das
,
D.
,
Das
,
M.
,
Balla
,
V. K.
,
Bandyopadhyay
,
A.
, and
Chowdhury
,
A. R.
,
2016
, “
Understanding Compressive Deformation Behavior of Porous Ti Using Finite Element Analysis
,”
Mater. Sci. Eng. C
,
64
, pp.
436
443
. 10.1016/j.msec.2016.03.066
26.
Richter
,
H.
,
2017
, “
Mote3D: An Open-Source Toolbox for Modelling Periodic Random Particulate Microstructures
,”
Modell. Simul. Mater. Sci. Eng.
,
25
, p.
035011
. 10.1088/1361-651x/aa629a
27.
Panico
,
M.
, and
Brinson
,
L.
,
2008
, “
Computational Modeling of Porous Shape Memory Alloys
,”
Int. J. Solids Struct.
,
45
(
21
), pp.
5613
5626
. 10.1016/j.ijsolstr.2008.06.005
28.
Luther
,
D. I. T.
,
2005
,
Homogenization of Damaged Concrete Meso-Structures Using Representative Volume Elements—Implementation and Application to Slang
,
Bauhaus-University
,
Weimar, Germany
.
29.
Al Kassem
,
G.
, and
Weichert
,
D.
,
2009
, “
Micromechanical Material Models for Polymer Composites Through Advanced Numerical Simulation Techniques
,”
Proc. Appl. Math. Mech
,
9
, pp.
413
414
.
30.
Shen
,
H.
, and
Brinson
,
L. C.
,
2006
, “
A Numerical Investigation of the Effect of Boundary Conditions and Representative Volume Element Size for Porous Titanium
,”
J. Mech. Mater. Struct.
,
1
(
7
), pp.
1179
1204
. 10.2140/jomms.2006.1.1179
31.
Systemes
,
D.
,
2018
, “
ABAQUS 2017 Documentation
,” English Version, 6.
32.
Chavoshi
,
S. Z.
,
Jiang
,
J.
,
Wang
,
Y.
,
Fang
,
S.
,
Wang
,
S.
,
Shi
,
Z.
, and
Lin
,
J.
,
2018
, “
Density-Based Constitutive Modelling of P/M FGH96 for Powder Forging
,”
Int. J. Mech. Sci.
,
138
, pp.
110
121
. 10.1016/j.ijmecsci.2018.02.003
33.
Zhang
,
M.
,
Li
,
F.
,
Yuan
,
Z.
,
Li
,
J.
, and
Wang
,
S.
,
2013
, “
Effect of Heat Treatment on the Micro-Indentation Behavior of Powder Metallurgy Nickel Based Superalloy FGH96
,”
Mater. Des.
,
49
, pp.
705
715
. 10.1016/j.matdes.2013.02.024
34.
Rasband
,
W.
,
1997
,
ImageJ Software
,
National Institutes of Health
,
Bethesda, MD
(2012).
35.
Dewey
,
J. M.
,
1947
, “
The Elastic Constants of Materials Loaded With Non-Rigid Fillers
,”
J. Appl. Phys.
,
18
(
578
), pp.
578
581
. 10.1063/1.1697691
36.
Zhao
,
Y.
,
Tandon
,
G.
, and
Weng
,
G.
,
1989
, “
Elastic Moduli for a Class of Porous Materials
,”
Acta Mech.
,
76
(
1–2
), pp.
105
131
. 10.1007/BF01175799
37.
Arnold
,
M.
,
Boccaccini
,
A.
, and
Ondracek
,
G.
,
1996
, “
Prediction of the Poisson’s Ratio of Porous Materials
,”
J. Mater. Sci.
,
31
(
6
), pp.
1643
1646
. 10.1007/BF00357876
38.
Nielsen
,
L. F.
,
1982
, “
Elastic Properties of Two-Phase Materials
,”
Mater. Sci. Eng.
,
52
(
1
), pp.
39
62
. 10.1016/0025-5416(82)90068-4
39.
Spinner
,
S.
,
Knudsen
,
F.
, and
Stone
,
L.
,
1963
, “
Elastic Constant-Porosity Relations for Polycrystalline Thoria
,”
J. Res. Nat. Bur. Stand., Sec. C
,
67C
(
No.1
), pp.
39
46
.
40.
Dunn
,
M. L.
, and
Ledbetter
,
H.
,
1995
, “
Poisson’s Ratio of Porous and Microcracked Solids: Theory and Application to Oxide Superconductors
,”
J. Mater. Res.
,
10
(
11
), pp.
2715
2722
. 10.1557/JMR.1995.2715
41.
Ramakrishnan
,
N.
, and
Arunachalam
,
V.
,
1993
, “
Effective Elastic Moduli of Porous Ceramic Materials
,”
J. Am. Ceram. Soc.
,
76
(
11
), pp.
2745
2752
. 10.1111/j.1151-2916.1993.tb04011.x
42.
Ramakrishnan
,
N.
, and
Arunachalam
,
V.
,
1990
, “
Effective Elastic Moduli of Porous Solids
,”
J. Mater. Sci.
,
25
(
9
), pp.
3930
3937
. 10.1007/BF00582462
43.
Roberts
,
A. P.
, and
Garboczi
,
E. J.
,
2000
, “
Elastic Properties of Model Porous Ceramics
,”
J. Am. Ceram. Soc.
,
83
(
12
), pp.
3041
3048
. 10.1111/j.1151-2916.2000.tb01680.x
44.
Gibson
,
I.
, and
Ashby
,
M. F.
,
1982
, “
The Mechanics of Three-Dimensional Cellular Materials
,”
Proc. R. Soc. Lond. A
,
382
(
1782
), pp.
43
59
. 10.1098/rspa.1982.0088
45.
McAdam
,
G.
,
1951
, “
Some Relations of Powder Characteristics to the Elastic Modulus and Shrinkage of Sintered Ferrous Compacts
,”
J. Iron Steel Inst.
,
168
, pp.
346
358
.
46.
Maitra
,
A.
, and
Phani
,
K. K.
,
1994
, “
Ultrasonic Evaluation of Elastic Parameters of Sintered Powder Compacts
,”
J. Mater. Sci.
,
29
(
17
), pp.
4415
4419
. 10.1007/BF00376263
47.
Herakovich
,
C.
, and
Baxter
,
S.
,
1999
, “
Influence of Pore Geometry on the Effective Response of Porous Media
,”
J. Mater. Sci.
,
34
(
7
), pp.
1595
1609
. 10.1023/A:1004528600213
48.
Ishai
,
O.
, and
Cohen
,
L.
,
1967
, “
Elastic Properties of Filled and Porous Epoxy Composites
,”
Int. J. Mech. Sci.
,
9
(
8
), pp.
539
546
. 10.1016/0020-7403(67)90053-7
49.
Martin
,
R. B.
, and
Haynes
,
R. R.
,
1971
, “
Confirmation of Theoretical Relation Between Stiffness and Porosity in Ceramics
,”
J. Am. Ceram. Soc.
,
54
(
8
), pp.
410
411
. 10.1111/j.1151-2916.1971.tb12333.x
50.
Hashin
,
Z.
,
1962
, “
The Elastic Moduli of Heterogeneous Materials
,”
J. Appl. Mech.
,
29
(
1
), pp.
143
150
. 10.1115/1.3636446
51.
Hasselman
,
D.
,
1962
, “
On the Porosity Dependence of the Elastic Moduli of Polycrystalline Refractory Materials
,”
J. Am. Ceram. Soc.
,
45
(
9
), pp.
452
453
. 10.1111/j.1151-2916.1962.tb11191.x
52.
Bert
,
C. W.
,
1985
, “
Prediction of Elastic Moduli of Solids With Oriented Porosity
,”
J. Mater. Sci.
,
20
(
6
), pp.
2220
2224
. 10.1007/BF01112307
53.
Fryxell
,
R.
, and
Chandler
,
B.
,
1964
, “
Creep, Strength, Expansion, and Elastic Moduli of Sintered BeO as a Function of Grain Size, Porosity, and Grain Orientation
,”
J. Am. Ceram. Soc.
,
47
(
6
), pp.
283
291
. 10.1111/j.1151-2916.1964.tb14417.x
54.
Spriggs
,
R.
,
1961
, “
Expression for Effect of Porosity on Elastic Modulus of Polycrystalline Refractory Materials, Particularly Aluminum Oxide
,”
J. Am. Ceram. Soc.
,
44
(
12
), pp.
628
629
. 10.1111/j.1151-2916.1961.tb11671.x
55.
Paul
,
B.
,
1960
, “
Prediction of Elastic Constants of Multiphase Materials
,”
Trans. Metall. Soc. AIME
,
218
, pp.
36
41
.
56.
Boccaccini
,
A.
, and
Fan
,
Z.
,
1997
, “
A New Approach for the Young’s Modulus-Porosity Correlation of Ceramic Materials
,”
Ceram. Int.
,
23
(
3
), pp.
239
245
. 10.1016/S0272-8842(96)00033-8
57.
Boccaccini
,
A.
,
1994
, “
Comment on “Dependence of Ceramic Fracture Properties on Porosity”
,”
J. Mater. Sci. Lett.
,
13
, pp.
1035
1037
.
58.
Eudier
,
M.
,
1962
, “
The Mechanical Properties of Sintered Low-Alloy Steels
,”
Powder Metall.
,
5
(
9
), pp.
278
290
. 10.1179/pom.1962.5.9.005
59.
Knudsen
,
F.
,
1962
, “
Effect of Porosity on Young’s Modulus of Alumina
,”
J. Am. Ceram. Soc.
,
45
(
2
), pp.
94
95
. 10.1111/j.1151-2916.1962.tb11089.x
60.
Rossi
,
R.
,
1968
, “
Prediction of the Elastic Moduli of Composites
,”
J. Am. Ceram. Soc.
,
51
(
8
), pp.
433
440
. 10.1111/j.1151-2916.1968.tb11914.x
61.
Hasselman
,
D.
, and
Fulrath
,
R.
,
1964
, “
Effect of Small Fraction of Spherical Porosity on Elastic Moduli of Glass
,”
J. Am. Ceram. Soc.
,
47
(
1
), pp.
52
53
. 10.1111/j.1151-2916.1964.tb14644.x
62.
Phani
,
K. K.
, and
Sanyal
,
D.
,
2005
, “
Critical Reevaluation of the Prediction of Effective Poisson’s Ratio for Porous Materials
,”
J. Mater. Sci.
,
40
(
21
), pp.
5685
5690
. 10.1007/s10853-005-1507-9
63.
Siegkas
,
P.
,
Tagarielli
,
V.
,
Petrinic
,
N.
, and
Lefebvre
,
L.
,
2011
, “
The Compressive Response of a Titanium Foam at Low and High Strain Rates
,”
J. Mater. Sci.
,
46
(
8
), pp.
2741
2747
. 10.1007/s10853-010-5147-3
64.
Chavoshi
,
S. Z.
, and
Xu
,
S.
,
2018
, “
Tension–Compression Asymmetry in Plasticity of Nanotwinned 3C-SiC Nanocrystals
,”
J. Appl. Phys.
,
124
, p.
095103
. 10.1063/1.5046949
65.
Chavoshi
,
S. Z.
,
Tschopp
,
M. A.
, and
Branicio
,
P. S.
,
2019
, “
Transition of Deformation Mechanisms in Nanotwinned Single Crystalline SiC
,”
Philos. Mag.
,
99
(
21
), pp.
2636
2660
. 10.1080/14786435.2019.1637033
You do not currently have access to this content.