Abstract

Under the compression mode, the direction of force on the magnetorheological elastomer (MRE) is parallel to the direction of electromagnetic force, so the effect of electromagnetic force on its dynamic mechanical properties cannot be ignored. Therefore, this paper focuses on the effect of electromagnetic force on the dynamic mechanical properties of MRE under compression mode. A new type of testing device was designed and processed. Under a different loading frequency, strain amplitude and external magnetic field, dynamic mechanical properties of MRE were tested, respectively. The result shows that the stiffness and energy dissipation capacity of MRE increase with the current and loading frequency. The stiffness of MRE decreases with the increase in the strain amplitude, but the energy dissipation capacity increases. Comparing the force-displacement curve of MRE with or without the effect of the electromagnetic force, it shows that the electromagnetic force has a great effect on the stiffness of MRE and little effect on its energy dissipation capacity. When the electromagnetic force is removed, the stiffness of MRE decreases, and the change rate of stiffness increases with current. The maximum change rate of stiffness is 5.65%.

References

1.
Ginder
,
J. M.
,
Nichols
,
M. E.
,
Elie
,
L. D.
, and
Clark
,
S. M.
,
2000
, “
Controllable-Stiffness Components Based on Magnetorheological Elastomers
,”
Proc. SPIE
,
3985
, pp.
418
425
. 10.1117/12.388844
2.
Ginder
,
J. M.
,
Schlotter
,
W. F.
, and
Nichols
,
M. E.
,
2001
, “
Magnetorheological Elastomers in Tunable Vibration Absorbers
,”
Proc. SPIE
,
4331
, pp.
103
110
. 10.1117/12.432694
3.
Jang
,
D. L.
,
Yun
,
G. E.
,
Park
,
J. E.
, and
Kim
,
Y. K.
,
2018
, “
Designing an Attachable and Power-Efficient All-in-One Module of a Tunable Vibration Absorber Based on Magnetorheological Elastomer
,”
Smart Mater. Struct.
,
27
(
8
), p.
085009
. 10.1088/1361-665X/aacdbd
4.
Shin
,
B. C.
,
Yoon
,
J. H.
,
Kim
,
Y. K.
, and
Kim
,
K. S.
,
2015
, “
Note: Vibration Suppression Using Tunable Vibration Absorber Based on Stiffness Variable Magneto-Rheological gel
,”
Rev. Sci. Instrum.
,
86
(
10
), p.
106106
. 10.1063/1.4933225
5.
Liao
,
G. J.
,
Gong
,
X. L.
,
Xuan
,
S. H.
,
Kang
,
C. J.
, and
Zong
,
L. H.
,
2012
, “
Development of a Real-Time Tunable Stiffness and Damping Vibration Isolator Based on Magnetorheological Elastomer
,”
J. Intell. Mater. Syst. Struct.
,
23
(
1
), pp.
25
33
. 10.1177/1045389X11429853
6.
Bica
,
I.
,
2011
, “
Magnetoresistor Sensor with Magnetorheological Elastomers
,”
J. Ind. Eng. Chem.
,
17
(
1
), pp.
83
89
. 10.1016/j.jiec.2010.12.001
7.
Kim
,
Y. K.
,
Koo
,
J. H.
,
Kim
,
K. S.
, and
Kim
,
S. H.
,
2011
, “
Suppressing Harmonic Vibrations of a Miniature Cryogenic Cooler Using an Adaptive Tunable Vibration Absorber Based on Magneto-Rheological Elastomers
,”
Rev. Sci. Instrum.
,
82
(
3
), p.
164
. 10.1063/1.3553198
8.
Ausanio
,
G.
,
Iannotti
,
V.
,
Ricciardi
,
E.
,
Lanotte
,
L.
, and
Lanotte
,
L.
,
2014
, “
Magneto-Piezoresistance in Magnetorheological Elastomers for Magnetic Induction Gradient or Position Sensors
,”
Sens. Actuators, A
,
205
, pp.
235
239
. 10.1016/j.sna.2013.10.009
9.
Lokander
,
M.
, and
Stenberg
,
B.
,
2003
, “
Improving the Magnetorheological Effect in Isotropic Magnetorheological Rubber Materials
,”
Polym. Test.
,
22
(
6
), pp.
677
680
. 10.1016/S0142-9418(02)00175-7
10.
Chen
,
L.
,
Gong
,
X. L.
, and
Li
,
W. H.
,
2008
, “
Effect of Carbon Black on the Mechanical Performances of Magnetorheological Elastomers
,”
Polym. Test.
,
27
(
3
), pp.
340
345
. 10.1016/j.polymertesting.2007.12.003
11.
von Lockette
,
P. R.
,
Lofland
,
S. E.
,
Koo
,
J. H.
,
Kadlowec
,
J.
, and
Dermond
,
M.
,
2008
, “
Dynamic Characterization of Bimodal Particle Mixtures in Silicone Rubber Magnetorheological Materials
,”
Polym. Test.
,
27
(
8
), pp.
931
935
. 10.1016/j.polymertesting.2008.08.007
12.
Kwon
,
S. H.
,
Lee
,
J. H.
, and
Choi
,
H. J.
,
2018
, “
Magnetic Particle Filled Elastomeric Hybrid Composites and Their Magnetorheological Response
,”
Materials
,
11
(
6
), p.
1040
. 10.3390/ma11061040
13.
Yarra
,
S.
,
Gordaninejad
,
F.
,
Behrooz
,
M.
,
Pekcan
,
G.
,
Itani
,
A. M.
, and
Publicover
,
N.
,
2018
, “
Performance of a Large-Scale Magnetorheological Elastomer-Based Vibration Isolator for Highway Bridges
,”
J. Intell. Mater. Syst. Struct.
,
29
(
20
), pp.
3890
3901
. 10.1177/1045389X18799493
14.
Bastola
,
A. K.
, and
Li
,
L.
,
2018
, “
A New Type of Vibration Isolator Based on Magnetorheological Elastomer
,”
Mater. Des.
,
157
, pp.
431
436
. 10.1016/j.matdes.2018.08.009
15.
Leng
,
D. X.
,
Wu
,
T. T.
,
Liu
,
G. J.
,
Wang
,
X. J.
, and
Sun
,
L. Y.
,
2018
, “
Tunable Isolator Based on Magnetorheological Elastomer in Coupling Shear-Squeeze Mixed Mode
,”
J. Intell. Mater. Syst. Struct.
,
29
(
10
), pp.
2236
2248
. 10.1177/1045389X18758205
16.
Wang
,
Q.
,
Dong
,
X. F.
,
Li
,
L. Y.
, and
Ou
,
J. P.
,
2017
, “
Study on an Improved Variable Stiffness Tuned Mass Damper Based on Conical Magnetorheological Elastomer Isolators
,”
Smart Mater. Struct.
,
26
(
10
), p.
105028
. 10.1088/1361-665X/aa81e8
17.
Kallio
,
M.
,
Lindroos
,
T.
,
Aalto
,
S.
,
Järvinen
,
E.
,
Kärnä
,
T.
, and
Meinander
,
T.
,
2007
, “
Dynamic Compression Testing of a Tunable Spring Element Consisting of a Magnetorheological Elastomer
,”
Smart Mater. Struct.
,
16
(
2
), pp.
506
514
. 10.1088/0964-1726/16/2/032
18.
Li
,
R.
, and
Sun
,
L. Z.
,
2013
, “
Viscoelastic Responses of Silicone-Rubber-Based Magnetorheological Elastomers Under Compressive and Shear Loadings
,”
J. Eng. Mater. Technol.
,
135
(
2
), p.
021008
. 10.1115/1.4023839
19.
Ju
,
B. X.
,
Yu
,
M.
,
Fu
,
J.
,
Yang
,
Q.
,
Zheng
,
X.
, and
Liu
,
X. Q.
,
2012
, “
Dynamic Mechanical Properties Testing for Compression Mode of Magnetorheological Elastomer
,”
J. Funct. Mater.
,
43
(
3
), pp.
360
362 + 366
.
20.
Liao
,
G.
,
Gong
,
X.
,
Xuan
,
S.
,
Guo
,
C.
, and
Zong
,
L.
,
2012
, “
Magnetic-Field-Induced Normal Force of Magnetorheological Elastomer Under Compression Status
,”
Ind. Eng. Chem. Res.
,
51
(
8
), pp.
3322
3328
. 10.1021/ie201976e
21.
Lerner
,
A. A.
, and
Cunefare
,
K. A.
,
2008
, “
Performance of MRE-Based Vibration Absorbers
,”
Journal of Intelligent Material Systems & Structures
,
19
(
5
), pp.
551
563
. 10.1177/1045389X07077850
22.
Popp
,
K.
,
Kröger
,
M.
,
Li
,
W.
,
Zhang
,
X.
, and
Kosasih
,
P. B.
,
2010
, “
MRE Properties Under Shear and Squeeze Modes and Applications
,”
J. Intell. Mater. Syst. Struct.
,
21
(
15
), pp.
1471
1477
. 10.1177/1045389X09355666
23.
Schubert
,
G.
, and
Harrison
,
P.
,
2015
, “
Large-Strain Behaviour of Magneto-Rheological Elastomers Tested Under Uniaxial Compression and Tension, and Pure Shear Deformations
,”
Polym. Test.
,
42
, pp.
122
134
. 10.1016/j.polymertesting.2015.01.008
24.
Sun
,
S. S.
,
Chen
,
Y.
,
Yang
,
J.
,
Tian
,
T. F.
,
Deng
,
H. X.
,
Li
,
W. H.
,
Du
,
H.
, and
Alici
,
G.
,
2014
, “
The Development of an Adaptive Tuned Magnetorheological Elastomer Absorber Working in Squeeze Mode
,”
Smart Mater. Struct.
,
23
(
7
), p.
075009
. 10.1088/0964-1726/23/7/075009
25.
Sun
,
S. S.
,
Yang
,
J.
,
Li
,
W. H.
,
Du
,
H.
,
Alici
,
G.
,
Yan
,
T. H.
, and
Nakano
,
M.
,
2016
, “
Development of an Isolator Working With Magnetorheological Elastomers and Fluids
,”
Mech. Syst. Sig. Process.
,
83
, pp.
371
384
. 10.1016/j.ymssp.2016.06.020
26.
Vatandoost
,
H.
,
Norouzi
,
M.
,
Alehashem
,
S. M. S.
, and
Smoukov
,
S. K.
,
2017
, “
A Novel Phenomenological Model for Dynamic Behavior of Magnetorheological Elastomers in Tension-Compression Mode
,”
Smart Mater. Struct.
,
26
(
6
), p.
065011
. 10.1088/1361-665X/aa6126
27.
Koo
,
J. H.
,
Khan
,
F.
,
Jang
,
D. D.
, and
Jung
,
H. J.
,
2010
, “
Dynamic Characterization and Modeling of Magneto-Rheological Elastomers Under Compressive Loadings
,”
Smart Mater. Struct.
,
19
(
11
), p.
117002
. 10.1088/0964-1726/19/11/117002
28.
Lee
,
J. Y.
,
Kumar
,
V.
, and
Lee
,
D. J.
,
2019
, “
Compressive Properties of Magnetorheological Elastomer With Different Magnetic Fields and Types of Filler
,”
Polym. Adv. Technol.
,
30
(
4
), pp.
1106
1115
. 10.1002/pat.4544
29.
Yu
,
G. J.
,
Wen
,
X. X.
,
Du
,
C. B.
, and
Guo
,
F.
,
2019
, “
The Mechanical Properties of a Smart Compression-Type Isolator Based on Magnetorheological Gel and Magnetorheological Elastomer
,”
Adv. Mater. Sci. Eng.
,
2019
, p.
7976580
. 10.1155/2019/7976580
30.
Wan
,
Y. X.
,
Xiong
,
Y. P.
, and
Zhang
,
S. M.
,
2019
, “
Temperature Effect on Viscoelastic Properties of Anisotropic Magnetorheological Elastomers Under Compression
,”
Smart Mater. Struct.
,
28
(
1
), p.
015005
. 10.1088/1361-665X/aaeaf8
You do not currently have access to this content.