Abstract

Standard-compliant measurement of the in-plane fracture toughness of metals is often challenging due to insufficient material in the through-thickness direction to extract a full single edge bending (SEB) or compact tension (CT) fracture specimen. In the present work, we propose a new specimen design methodology to overcome this challenge. A W-shaped SEB specimen (called W-SEB) was developed, and its topology was optimized using finite element simulations. The new specimen design was validated numerically and experimentally on a case study showing excellent agreement with standard ASTM E1820 actual SEB specimen geometry. In view assessing the anisotropy of the fracture toughness (KQ and crack tip opening displacement (CTOD)) of pipeline steels susceptible to hydrogen-induced cracking (HIC), the W-SEB specimen was tested on X65 and X42 pipeline steel samples taken from the field. Experimental results show an increase in the maximum CTOD along the in-plane direction as compared to the transverse direction for both steel grades. Such experimental results could lead to important considerations with respect to accurate fitness for service assessment of HIC-damaged assets.

References

1.
BS 7910
,
2015
,
Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures
,
British Standards Institution
,
London, UK
.
2.
API 579-1/ASME FFS-1
,
2007
,
Fitness-For-Service
,
American Petroleum Institute
,
Washington, DC
.
3.
ASTM E1820
,
2013
,
Standard Test Method for Measurement of Fracture Toughness
,
ASTM International
,
West Conshohocken, PA
.
4.
ASTM E399
,
2013
,
Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
.
5.
ISO 12135
,
2007
,
Metallic Materials–Unified Method of Test for the Determination of Quasistatic Fracture Toughness
,
International Organization for Standardisation
,
Geneva
.
6.
BS 7448
,
1991
,
Fracture Mechanics Toughness Tests. Method for Determination of KIc, Critical CTOD and Critical J Values of Metallic Materials
,
British Standards Institution
,
London, UK
.
7.
Revie
,
R. W.
,
Sastri
,
V. S.
,
Ramsingh
,
R. R.
,
Lafreniere
,
Y.
, and
Elboujdaini
,
M.
,
1993
, “
Hydrogen-Induced Cracking of Line Pipe Steels Used in Sour Service
,”
Corrosion
,
49
(
7
), pp.
531
535
. 10.5006/1.3316081
8.
Kane
,
R. D.
, and
Cayard
,
M. S.
,
1998
, “
Roles of H2S in the Behavior of Engineering Alloys: A Review of Literature and Experience
,”
CORROSION 98
,
San Diego, CA
,
Mar. 22–27
.
9.
Elboujdaini
,
M.
,
2011
, “Hydrogen-Induced Cracking and Sulfide Stress Cracking,”
Uhlig’s Corrosion Handbook
, 3rd ed.,
R. W.
Revie
, ed.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
10.
Mohtadi-Bonab
,
M. A.
,
Eskandari
,
M.
,
Rahman
,
K. M. M.
,
Ouellet
,
R.
, and
Szpunar
,
J. A.
,
2016
, “
An Extensive Study of Hydrogen-Induced Cracking Susceptibility in an API X60 Sour Service Pipeline Steel
,”
Int. J. Hydrogen Energy
,
41
(
7
), pp.
4185
4197
. 10.1016/j.ijhydene.2016.01.031
11.
Ohaeri
,
E.
,
Eduok
,
U.
, and
Szpunar
,
J.
,
2018
, “
Hydrogen Related Degradation in Pipeline Steel: A Review
,”
Int. J. Hydrogen Energy
,
43
(
31
), pp.
14584
14617
. 10.1016/j.ijhydene.2018.06.064
12.
Krom
,
A. H. M.
,
Bakker
,
A.
, and
Koers
,
R. W. J.
,
1997
, “
Modelling Hydrogen-Induced Cracking in Steel Using a Coupled Diffusion Stress Finite Element Analysis
,”
Int. J. Press. Vessel. Pip.
,
72
(
2
), pp.
139
147
. 10.1016/S0308-0161(97)00019-7
13.
Gonzalez
,
J. L.
,
Ramirez
,
R.
,
Hallen
,
J. M.
, and
Guzman
,
R. A.
,
1997
, “
Hydrogen-Induced Crack Growth Rate in Steel Plates Exposed to Sour Environments
,”
Corrosion
,
53
(
12
), pp.
935
943
. 10.5006/1.3290278
14.
Traidia
,
A.
,
Alfano
,
M.
,
Lubineau
,
G.
,
Duval
,
S.
, and
Sherik
,
A.
,
2012
, “
An Effective Finite Element Model for the Prediction of Hydrogen Induced Cracking in Steel Pipelines
,”
Int. J. Hydrogen Energy
,
37
(
21
), pp.
16214
16230
. 10.1016/j.ijhydene.2012.08.046
15.
Hudson
,
C. M.
, and
Seward
,
S. K.
,
1978
, “
A Compendium of Sources of Fracture Toughness and Fatigue-Crack Growth Data for Metallic Alloys
,”
Int. J. Fract.
,
14
(
4
), pp.
R151
R184
. 10.1007/BF00015997
16.
Hucek
,
H. J.
,
1985
,
Structural Alloys Handbook
,
Battelle’s Columbus Laboratories
,
Battelle, Columbus
.
17.
Campbell
,
F. C.
,
2012
,
Fatigue and Fracture: Understanding the Basics
,
ASM International
,
Materials Park, OH
.
18.
Ju
,
J. B.
,
Lee
,
J. S.
, and
Jang
,
J.
,
2007
, “
Fracture Toughness Anisotropy in a API Steel Line-Pipe
,”
Mater. Lett.
,
61
(
29
), pp.
5178
5180
. 10.1016/j.matlet.2007.04.007
19.
Lam
,
P. S.
,
Sindelar
,
R. L.
,
Duncan
,
A. J.
, and
Adams
,
T. M.
,
2009
, “
Literature Survey of Gaseous Hydrogen Effects on the Mechanical Properties of Carbon and Low Alloy Steels
,”
ASME J. Press. Vessel Technol.
,
131
(
4
), p.
041408
. 10.1115/1.3141435
20.
Hariprasad
,
S.
,
Sastry
,
S. M. L.
,
Jerina
,
K. L.
, and
Lederich
,
R. J.
,
1994
, “
Fatigue Crack Growth Rates and Fracture Toughness of Rapidly Solidified Al-8.5 pct Fe-1.2 pct V-1.7 pct Si Alloys
,”
Metall. Mater. Trans. A
,
25
(
5
), pp.
1005
1014
. 10.1007/BF02652275
21.
Traidia
,
A.
,
Chatzidouros
,
E.
, and
Jouiad
,
M.
,
2018
, “
Method and Device for Testing a Material Sample in a Standard Test for In-Plane Fracture Toughness Evaluation
”, US patent Application 15/858,273.
22.
Moore
,
P.
, and
Pargeter
,
A.
,
2018
, “
Comparison of Using the Crack Mouth Displacement (CMOD) and Load Line Displacement (LLD) Methods in the Determination of Critical J Integral in SENB Specimens
,”
Fatigue Fract. Eng. Mater. Struct.
,
41
(
9
). 10.1111/ffe.12837
23.
Konda
,
N.
,
Arimochi
,
K.
,
Inami
,
A.
,
Takaoka
,
Y.
,
Yoshida
,
T.
, and
Lotsberg
,
I.
,
2011
, “
Development of Structural Steel With High Resistance to Fatigue Crack Initiation and Growth: Part
,”
ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
,
Rotterdam, The Netherlands
,
June 19–24
.
24.
Moore
,
P.
, and
Pisarski
,
H.
,
2013
, “
CTOD and Pipelines: the Past, Present, and Future
,”
J. Pipeline Eng.
,
12
(
3
), pp.
237
244
.
25.
Chatterjee
,
S.
,
Koley
,
S.
,
Das Bakshi
,
S.
, and
Shome
,
M.
,
2017
, “
Role of Crystallographic Texture, Delamination and Constraint on Anisotropy in Fracture Toughness of API X70 Line Pipe Steels
,”
Mater. Sci. Eng. A
,
708
, pp.
254
266
. 10.1016/j.msea.2017.09.104
26.
Angeles-Herrera
,
D.
,
Albiter-Hernández
,
A.
,
Cuamatzi-Meléndez
,
R.
, and
González-Velázquez
,
J. L.
,
2014
, “
Fracture Toughness in the Circumferential-Longitudinal and Circumferential-Radial Directions of Longitudinal Weld API 5L X52 Pipeline Using Standard C(T) and Nonstandard Curved SE(B) Specimens
,”
Int. J. Fract.
,
188
(
2
), pp.
251
256
. 10.1007/s10704-014-9949-1
27.
Chatzidouros
,
E. V.
,
Traidia
,
A.
,
Devarapalli
,
R. S.
,
Pantelis
,
D. I.
,
Steriotis
,
T. A.
, and
Jouiad
,
M.
,
2018
, “
Effect of Hydrogen on Fracture Toughness Properties of a Pipeline Steel Under Simulated Sour Service Conditions
,”
Int. J. Hydrogen Energy
,
43
(
11
), pp.
5747
5759
. 10.1016/j.ijhydene.2018.01.186
28.
ASTM A370
,
2015
,
Standard Test Methods and Definitions for Mechanical Testing of Steel Products 1
,
ASTM International
,
West Conshohocken, PA
.
29.
ASTM E415
,
2015
,
Standard Test Method for Analysis of Carbon and Low-Alloy Steel by Spark Atomic Emission Spectrometry
,
ASTM International
,
West Conshohocken, PA
.
You do not currently have access to this content.