Abstract

Out-of-plane compression experiments with the strain rate from 0.0001/s to 1000/s are performed on a three-dimensional (3D) fine weave-pierced Carbon/Carbon (C/C) composite using a universal testing machine, a high-speed testing machine, and a split Hopkinson pressure bar (SHPB). The compressive failure mechanism of the composite is analyzed by a multi-scale analysis method, which ranges from micro-scale defect propagation, through meso-scale microstructure failure, to macro-scale material failure. In order to predict the out-of-plane compressive properties of 3D fine weave-pierced C/C composite at different strain rates, a strain-rate-dependent compressive constitutive model is proposed. The results show that the out-of-plane compressive behavior of the 3D fine weave-pierced C/C composite is sensitive to strain rate. With increasing the strain rate, the initial compressive modulus, the maximum stress, and the strain at the maximum stress increase. The difference in mechanical behavior between quasi-static and high strain rate compression is owing to the strain rate effect on the defect propagation of the 3D fine weave-pierced C/C composite. The proposed constitutive model matches well with the experimental data.

References

1.
Schmidt,
D. L.
1996
, Carbon-Carbon Composites (CCC)—A Historical Perspective. Wright Laboratory Report No. WL-TR-96-4107.
2.
Corral
,
E. L.
, and
Loehman
,
R. E.
,
2008
, “
Ultra-High-Temperature Ceramic Coatings for Oxidation Protection of Carbon–Carbon Composites
,”
J. Am. Ceram. Soc.
,
91
(
5
), pp.
1495
1502
.
3.
Rana
,
S.
, and
Fangueiro
,
R.
,
2016
, “Advanced Composites in Aerospace Engineering,”
Advanced Composite Materials for Aerospace Engineering
,
Woodhead Publishing
,
Cambridge, UK
, pp.
1
15
.
4.
Scarponi
,
C.
,
2016
, “Carbon–Carbon Composites in Aerospace Engineering,”
Advanced Composite Materials for Aerospace Engineering
,
S.
Rana
, and
R.
Fangueiro
, eds.,
Woodhead Publishing
,
Cambridge, UK
, pp.
385
412
.
5.
Su
,
J. M.
,
Zhou
,
S. J.
,
Li
,
R. Z.
,
Xiao
,
Z. C.
, and
Cui
,
H.
,
2015
, “
A Review of Carbon–Carbon Composites for Engineering Applications
,”
Carbon
,
93
, p.
1081
.
6.
Xie
,
W. H.
,
Yang
,
F.
,
Meng
,
S. H.
,
Scarpa
,
F.
, and
Wang
,
L. B.
,
2020
, “
Perforation of Needle-Punched Carbon-Carbon Composites During High-Temperature and High-Velocity Ballistic Impacts
,”
Compos. Struct.
,
245
, p.
112224
.
7.
Clarkson
,
B. L.
, and
Mead
,
D. J.
,
1973
, “
High Frequency Vibration of Aircraft Structures
,”
J. Sound Vib.
,
28
(
3
), pp.
487
504
.
8.
Li
,
D. S.
,
Duan
,
H. W.
,
Wang
,
W.
,
Ge
,
D. Y.
,
Jiang
,
L.
, and
Yao
,
Q. Q.
,
2017
, “
Strain Rate and Temperature Effect on Mechanical Properties and Failure of 3D Needle-Punched Carbon/Carbon Composites Under Dynamic Loading
,”
Compos. Struct.
,
172
, pp.
229
241
.
9.
Guo
,
F.
,
Fei
,
Q. G.
,
Zhang
,
P. W.
,
Li
,
Y. B.
,
Wang
,
M.
, and
Gupta
,
N.
,
2020
, “
Dynamic Shear Fracture Behaviors and “Pseudo-Plastic” Constitutive Model of Carbon/Carbon Composite Pins
,”
Int. J. Mech. Sci.
,
187
, p.
105903
.
10.
Wang
,
M.
,
Zhang
,
P. W.
, and
Fei
,
Q. G.
,
2018
, “
Transverse Properties Prediction of Polymer Composites at High Strain Rates Based on Unit Cell Model
,”
J. Aerosp. Eng.
,
31
(
2
), p.
04017102
.
11.
Yu
,
J. W.
,
Fei
,
Q. G.
,
Zhang
,
P. W.
,
Li
,
Y. B.
,
Zhang
,
D. H.
, and
Guo
,
F.
,
2020
, “
An Innovative Yield Criterion Considering Strain Rates Based on Von Mises Stress
,”
ASME J. Pressure Vessel Technol.
,
142
(
1
), p.
014501
.
12.
Feng
,
L.
,
Li
,
K. Z.
,
Zhao
,
Z. G.
,
Li
,
H. J.
,
Zhang
,
L. L.
,
Lu
,
J. H.
, and
Song
,
Q.
,
2016
, “
Three-Dimensional Carbon/Carbon Composites with Vertically Aligned Carbon Nanotubes: Providing Direct and Indirect Reinforcements to the Pyrocarbon Matrix
,”
Mater. Des.
,
92
, pp.
120
128
.
13.
Hatta
,
H.
,
Goto
,
K.
, and
Aoki
,
T.
,
2005
, “
Strengths of C/C Composites Under Tensile, Shear, and Compressive Loading: Role of Interfacial Shear Strength
,”
Compos. Sci. Technol.
,
65
(
15–16
), pp.
2550
2562
.
14.
Kuo
,
W. S.
,
Ko
,
T. H.
, and
Lo
,
T. S.
,
2002
, “
Failure Behavior of Three-Axis Woven Carbon/Carbon Composites Under Compressive and Transverse Shear Loads
,”
Compos. Sci. Technol.
,
62
(
7–8
), pp.
989
999
.
15.
Song
,
Q.
,
Li
,
K. Z.
,
Li
,
H. J.
, and
Fu
,
Q. G.
,
2013
, “
Increasing the Tensile Property of Unidirectional Carbon/Carbon Composites by Grafting Carbon Nanotubes Onto Carbon Fibers by Electrophoretic Deposition
,”
J. Mater. Sci. Technol.
,
29
(
8
), pp.
711
714
.
16.
Zhang
,
J. C.
,
Luo
,
R. Y.
,
Xiang
,
Q.
, and
Yang
,
C. L.
,
2011
, “
Compressive Fracture Behavior of 3D Needle-Punched Carbon/Carbon Composites
,”
Mater. Sci. Eng. A
,
528
(
15
), pp.
5002
5006
.
17.
Chao
,
X. J.
,
Qi
,
L. H.
,
Tian
,
W. L.
,
Hou
,
X. H.
,
Ma
,
W. J.
, and
Li
,
H. J.
,
2018
, “
Numerical Evaluation of the Influence of Porosity on Bending Properties of 2D Carbon/Carbon Composites
,”
Compos. Part B Eng.
,
136
, pp.
72
80
.
18.
Xu
,
C.
,
Yang
,
Q.
,
Jin
,
H.
,
Meng
,
S.
, and
Han
,
X.
,
2020
, “
The Failure Mechanism of 3D C/C Composite Under Compression-Shear Coupled Loads: An Experimental Study
,”
Exp. Tech.
,
44
, pp.
275
282
.
19.
Guo
,
F.
,
Fei
,
Q. G.
,
Li
,
Y. B.
,
Zhang
,
P. W.
,
Wang
,
M.
, and
Yu
,
J. W.
,
2020
, “
Novel Statistical Analysis Method for Determining Shear Strength of C/C Composite Pin
,”
Ceram. Int.
,
46
(
4
), pp.
5262
5270
.
20.
Li
,
D. S.
,
Zhao
,
C. Q.
,
Ge
,
T. Q.
,
Jiang
,
L.
,
Huang
,
C. J.
, and
Jiang
,
N.
,
2014
, “
Experimental Investigation on the Compression Properties and Failure Mechanism of 3D Braided Composites at Room and Liquid Nitrogen Temperature
,”
Compos. Part B Eng.
,
56
, pp.
647
659
.
21.
Li
,
D. S.
,
Yao
,
Q. Q.
,
Jiang
,
N.
, and
Jiang
,
L.
,
2016
, “
Bend Properties and Failure Mechanism of a Carbon/Carbon Composite with a 3D Needle-Punched Preform at Room and High Temperatures
,”
New Carbon Mater.
,
31
(
4
), pp.
437
444
.
22.
Davies
,
I. J.
, and
Rawlings
,
R. D.
,
1994
, “
Mechanical Properties in Compression of Low Density Carbon/Carbon Composites
,”
Composites
,
25
(
3
), pp.
229
236
.
23.
Yuan
,
Q. L.
,
Li
,
Y. L.
,
Li
,
H. J.
,
Li
,
S. P.
, and
Guo
,
L. J.
,
2008
, “
Quasi-Static and Dynamic Compressive Fracture Behavior of Carbon/Carbon Composites
,”
Carbon
,
46
(
4
), pp.
699
703
.
24.
Yuan
,
Q. L.
,
Li
,
Y. L.
,
Li
,
H. J.
,
Li
,
S. P.
, and
Guo
,
L. J.
,
2007
, “
Strain Rate Sensitivity of C/C Composites Under Compression
,”
J. Inorg. Mater.
,
22
(
2
), pp.
311
314
.
25.
Verma
,
D.
,
Exner
,
M.
, and
Tomar
,
V.
,
2016
, “
An Investigation Into Strain-Rate-Dependent Constitutive Properties of a Sandwiched Epoxy Interface
,”
Mater. Des.
,
112
, pp.
345
356
.
26.
Yang
,
B. J.
,
Kim
,
B. R.
, and
Lee
,
H. K.
,
2012
, “
Predictions of Viscoelastic Strain Rate Dependent Behavior of Fiber-Reinforced Polymeric Composites
,”
Compos. Struct.
,
94
(
4
), pp.
1420
1429
.
27.
Liu
,
M. S.
,
Li
,
Y. L.
,
Xu
,
F.
,
Xu
,
Z. J.
, and
Cheng
,
L. F.
,
2008
, “
Dynamic Compressive Mechanical Properties and a new Constitutive Model of 2D-C/SiC Composites
,”
Mater. Sci. Eng. A
,
489
(
1–2
), pp.
120
126
.
28.
Li
,
Y. L.
,
Suo
,
T.
, and
Liu
,
M. S.
,
2009
, “
Influence of the Strain Rate on the Mechanical Behavior of the 3D Needle-Punched C/SiC Composite
,”
Mater. Sci. Eng. A
,
507
(
1–2
), pp.
6
12
.
29.
Daniel
,
I. M.
,
Cho
,
J. M.
,
Werner
,
B. T.
, and
Fenner
,
J. S.
,
2011
, “
Characterization and Constitutive Modeling of Composite Materials Under Static and Dynamic Loading
,”
AIAA J.
,
49
(
8
), pp.
1658
1664
.
30.
Sun
,
L.
,
Wang
,
C.
,
Li
,
X. F.
,
Li
,
H.
,
Ye
,
M. Y.
, and
An
,
C.
,
2018
, “
Research Progress on Preforms of C/C Composites
,”
J. Aeronaut. Mater.
,
38
(
2
), pp.
86
95
.
31.
Ma
,
X.
,
Chen
,
S. A.
,
Mei
,
M.
,
Li
,
Y.
,
Li
,
G. D.
,
Hu
,
H. F.
,
He
,
X. B.
, and
Qu
,
X. H.
,
2016
, “
Microstructure and Mechanical Behaviors of T700 Carbon Fiber Reinforced C/SiC Composites via Precursor Infiltration and Pyrolysis
,”
Mater. Sci. Eng. A
,
666
, pp.
238
244
.
32.
Kim
,
B. C.
,
Park
,
D. C.
,
Kim
,
B. J.
, and
Lee
,
D. G.
,
2010
, “
Through-thickness Compressive Strength of a Carbon/Epoxy Composite Laminate
,”
Compos. Struct.
,
92
(
2
), pp.
480
487
.
33.
Park
,
D. C.
, and
Lee
,
D. G.
,
2005
, “
Through-thickness Compressive Strength of Carbon–Phenolic Woven Composites
,”
Compos. Struct.
,
70
(
4
), pp.
403
412
.
34.
Bas
,
H. K.
,
Jin
,
W. H.
,
Gupta
,
N.
, and
Luong
,
D. D.
,
2019
, “
Strain Rate-Dependent Compressive Behavior and Failure Mechanism of Cementitious Syntactic Foams
,”
Cem. Concr. Compos.
,
95
, pp.
70
80
.
35.
Xie
,
J. B.
,
Fang
,
G. D.
,
Chen
,
Z.
, and
Liang
,
J.
,
2017
, “
An Anisotropic Elastoplastic Damage Constitutive Model for 3D Needled C/C-SiC Composites
,”
Compos. Struct.
,
176
, pp.
164
177
.
36.
Nandlall
,
D.
,
Williams
,
K.
, and
Vaziri
,
R.
,
1998
, “
Numerical Simulation of the Ballistic Response of GRP Plates
,”
Compos. Sci. Technol.
,
58
(
9
), pp.
1463
1469
.
37.
Ypma
,
T. J.
,
1995
, “
Historical Development of the Newton–Raphson Method
,”
SIAM Rev.
,
37
(
4
), pp.
531
551
.
38.
O’Brien
,
T. K.
, and
Krueger
,
R.
,
2006
, “
Influence of Compression and Shear on the Strength of Composite Laminates with z-Pinned Reinforcement
,”
Appl. Compos. Mater.
,
13
(
3
), pp.
173
189
.
You do not currently have access to this content.