Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This study presents a cost-effective and high-precision machine learning (ML) method for predicting the melt-pool geometry and optimizing the process parameters in the laser powder-bed fusion (LPBF) process with Ti-6Al-4V alloy. Unlike many ML models, the presented method incorporates five key features, including three process parameters (laser power, scanning speed, and spot size) and two material parameters (layer thickness and powder porosity). The target variables are the melt-pool width and depth that collectively define the melt-pool geometry and give insight into the melt-pool dynamics in LPBF. The dataset integrates information from an extensive literature survey, computational fluid dynamics (CFD) modeling, and laser melting experiments. Multiple ML regression methods are assessed to determine the best model to predict the melt-pool geometry. Tenfold cross-validation is applied to evaluate the model performance using five evaluation metrics. Several data pre-processing, augmentation, and feature engineering techniques are performed to improve the accuracy of the models. Results show that the “Extra Trees regression” and “Gaussian process regression” models yield the least errors for predicting melt-pool width and depth, respectively. The ML modeling results are compared with the experimental and CFD modeling results to validate the proposed ML models. The most influential parameter affecting the melt-pool geometry is also determined by the sensitivity analysis. The processing parameters are optimized using an iterative grid search method employing the trained ML models. The presented ML framework offers computational speed and simplicity, which can be implemented in other additive manufacturing techniques to comprehend the critical traits.

References

1.
Rahman
,
M. S.
,
Schilling
,
P. J.
,
Herrington
,
P. D.
, and
Chakravarty
,
U. K.
,
2021
, “
A Comparison of the Thermo-Fluid Properties of Ti-6Al-4V Melt Pools Formed by Laser and Electron-Beam Powder-Bed Fusion Processes
,”
ASME J. Eng. Mater. Technol.
,
143
(
2
), p.
021003
.
2.
Jeong
,
J.
,
Webster
,
S.
,
Zha
,
R.
,
Mogonye
,
J.-E.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2024
, “
Effects of Laser-Powder Alignment on Clad Dimension and Melt Pool Temperature in Directed Energy Deposition
,”
ASME J. Manuf. Sci. Eng.
,
146
(
1
), p.
011007
.
3.
Lei
,
R.
,
Guo
,
Y. B.
, and
Guo
,
W.
,
2024
, “
Physics-Guided Long Short-Term Memory Networks for Emission Prediction in Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
146
(
1
), p.
011006
.
4.
Wang
,
J.
,
Jeong
,
S. G.
,
Kim
,
E. S.
,
Kim
,
H. S.
, and
Lee
,
B. J.
,
2023
, “
Material-Agnostic Machine Learning Approach Enables High Relative Density in Powder Bed Fusion Products
,”
Nat. Commun.
,
14
(
1
), pp.
1
12
.
5.
Baldi
,
N.
,
Giorgetti
,
A.
,
Polidoro
,
A.
,
Palladino
,
M.
,
Giovannetti
,
I.
,
Arcidiacono
,
G.
, and
Citti
,
P.
,
2023
, “
A Supervised Machine Learning Model for Regression to Predict Melt Pool Formation and Morphology in Laser Powder Bed Fusion
,”
Appl. Sci.
,
14
(
1
), p.
328
.
6.
Gorgannejad
,
S.
,
Martin
,
A. A.
,
Nicolino
,
J. W.
,
Strantza
,
M.
,
Guss
,
G. M.
,
Khairallah
,
S.
,
Forien
,
J. B.
, et al
,
2023
, “
Localized Keyhole Pore Prediction During Laser Powder Bed Fusion Via Multimodal Process Monitoring and X-ray Radiography
,”
Addit. Manuf.
,
78
, p.
103810
.
7.
Mojumder
,
S.
,
Gan
,
Z.
,
Li
,
Y.
,
Amin
,
A. A.
, and
Liu
,
W. K.
,
2023
, “
Linking Process Parameters With Lack-of-Fusion Porosity for Laser Powder Bed Fusion Metal Additive Manufacturing
,”
Addit. Manuf.
,
68
, p.
103500
.
8.
Mondal
,
S.
,
Gwynn
,
D.
,
Ray
,
A.
, and
Basak
,
A.
,
2020
, “
Investigation of Melt Pool Geometry Control in Additive Manufacturing Using Hybrid Modeling
,”
Metals
,
10
(
5
), p.
683
.
9.
Chen
,
L.
,
Yao
,
X.
,
Tan
,
C.
,
He
,
W.
,
Su
,
J.
,
Weng
,
F.
,
Chew
,
Y.
,
Ng
,
N. P. H.
, and
Moon
,
S. K.
,
2023
, “
In-Situ Crack and Keyhole Pore Detection in Laser Directed Energy Deposition Through Acoustic Signal and Deep Learning
,”
Addit. Manuf.
,
69
, p.
103547
.
10.
Ero
,
O.
,
Taherkhani
,
K.
, and
Toyserkani
,
E.
,
2023
, “
Optical Tomography and Machine Learning for In-Situ Defects Detection in Laser Powder Bed Fusion: A Self-Organizing Map and U-Net Based Approach
,”
Addit. Manuf.
,
78
, p.
103894
.
11.
Jeon
,
I.
,
Yang
,
L.
,
Ryu
,
K.
, and
Sohn
,
H.
,
2021
, “
Online Melt Pool Depth Estimation During Directed Energy Deposition Using Coaxial Infrared Camera, Laser Line Scanner, and Artificial Neural Network
,”
Addit. Manuf.
,
47
, p.
102295
.
12.
Song
,
Z.
,
Wang
,
X.
,
Gao
,
Y.
,
Son
,
J.
, and
Wu
,
J.
,
2023
, “
A Hybrid Deep Generative Network for Pore Morphology Prediction in Metal Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
145
(
7
), p.
071005
.
13.
Tian
,
Q.
,
Guo
,
S.
,
Melder
,
E.
,
Bian
,
L.
, and
Guo
,
W.
,
2021
, “
Deep Learning-Based Data Fusion Method for In Situ Porosity Detection in Laser-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
4
), p.
041011
.
14.
Senanayaka
,
A.
,
Tian
,
W.
,
Falls
,
T. C.
, and
Bian
,
L.
,
2023
, “
Understanding the Effects of Process Conditions on Thermal–Defect Relationship: A Transfer Machine Learning Approach
,”
ASME J. Manuf. Sci. Eng.
,
145
(
7
), p.
071010
.
15.
Ren
,
Z.
,
Gao
,
L.
,
Clark
,
S. J.
,
Fezzaa
,
K.
,
Shevchenko
,
P.
,
Choi
,
A.
,
Everhart
,
W.
,
Rollett
,
A. D.
,
Chen
,
L.
, and
Sun
,
T.
,
2023
, “
Machine Learning-Aided Real-Time Detection of Keyhole Pore Generation in Laser Powder Bed Fusion
,”
Science
,
379
(
6627
), pp.
89
94
.
16.
Alexander
,
Z.
,
Feldhausen
,
T.
,
Saleeby
,
K.
,
Kurfess
,
T.
,
Fu
,
K.
, and
Saldaña
,
C.
,
2023
, “
Data-Driven Approaches for Bead Geometry Prediction Via Melt Pool Monitoring
,”
ASME J. Manuf. Sci. Eng.
,
145
(
9
), p.
091011
.
17.
Ghungrad
,
S.
,
Faegh
,
M.
,
Gould
,
B.
,
Wolff
,
S. J.
, and
Haghighi
,
A.
,
2023
, “
Architecture-Driven Physics-Informed Deep Learning for Temperature Prediction in Laser Powder Bed Fusion Additive Manufacturing With Limited Data
,”
ASME J. Manuf. Sci. Eng.
,
145
(
8
), p.
081007
.
18.
Rahman
,
M. S.
,
Ciaccio
,
J.
, and
Chakravarty
,
U. K.
,
2022
, “
A Machine Learning Approach for Predicting Melt-Pool Dynamics of Ti-6Al-4V Alloy in the Laser Powder-Bed Fusion Process
,”
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
,
Virtual, Online
,
Nov. 1–5
, pp.
1
9
.
19.
Wilkinson
,
T.
,
Casata
,
M.
, and
Barba
,
D.
,
2023
, “Automatic Process Mapping for Ti64 Single Tracks in Laser Powder Bed Fusion,”
Materials Processing Fundamentals 2023
,
S.
Wagstaff
,
A.
Anderson
, and
A. S.
Sabau
, eds.,
Springer Nature Switzerland
,
Cham
, pp.
199
209
.
20.
Kuehne
,
M.
,
Bartsch
,
K.
,
Bossen
,
B.
, and
Emmelmann
,
C.
,
2023
, “
Predicting Melt Track Geometry and Part Density in Laser Powder Bed Fusion of Metals Using Machine Learning
,”
Prog. Addit. Manuf.
,
8
(
1
), pp.
47
54
.
21.
Paulson
,
N. H.
,
Gould
,
B.
,
Wolff
,
S. J.
,
Stan
,
M.
, and
Greco
,
A. C.
,
2020
, “
Correlations Between Thermal History and Keyhole Porosity in Laser Powder Bed Fusion
,”
Addit. Manuf.
,
34
, p.
101213
.
22.
Rahman
,
M. S.
,
Schilling
,
P. J.
,
Herrington
,
P. D.
, and
Chakravarty
,
U. K.
,
2019
, “
Thermofluid Properties of Ti-6Al-4V Melt Pool in Powder-Bed Electron Beam Additive Manufacturing
,”
ASME J. Eng. Mater. Technol.
,
141
(
4
), p.
041006
.
23.
Neira-Arce
,
A.
,
2012
, “
Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti6Al4V Alloys
,” Ph.D. dissertation, North Carolina State University, Raleigh, NC.
24.
Dilip
,
J. J. S.
,
Zhang
,
S.
,
Teng
,
C.
,
Zeng
,
K.
,
Robinson
,
C.
,
Pal
,
D.
, and
Stucker
,
B.
,
2017
, “
Influence of Processing Parameters on the Evolution of Melt Pool, Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective Laser Melting
,”
Prog. Addit. Manuf.
,
2
(
3
), pp.
157
167
.
25.
Gong
,
H.
,
Gu
,
H.
,
Zeng
,
K.
,
Dilip
,
J. S.
,
Pal
,
D.
,
Stucker
,
B.
,
Christiansen
,
D.
, and
Lewandowski
,
J.
,
2014
, “
Melt Pool Characterization for Selective Laser Melting of Ti-6Al-4V Pre-Alloyed Powder
,”
25th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 4–6
, pp.
256
267
.
26.
Soylemez
,
E.
,
2018
, “
Modeling the Melt Pool of the Laser Sintered Ti6Al4V Layers With Goldak’s Double-Ellipsoidal Heat Source
,”
Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
,
Austin, TX
,
Aug. 13–15
, pp.
1721
1736
.
27.
Kusuma
,
C.
,
2016
, “
The Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Pure Titanium and Ti-6Al-4V Alloy for Selective Laser Melting
,,” Ph.D. Dissertation, Wright State University, Dayton, OH.
28.
Cunningham
,
R.
,
Zhao
,
C.
,
Parab
,
N.
,
Kantzos
,
C.
,
Pauza
,
J.
,
Fezzaa
,
K.
,
Sun
,
T.
, and
Rollett
,
A. D.
,
2019
, “
Keyhole Threshold and Morphology in Laser Melting Revealed by Ultrahigh-Speed X-ray Imaging
,”
Science
,
363
(
6429
), pp.
849
852
.
29.
Cobbinah
,
P. V.
,
Nzeukou
,
R. A.
,
Onawale
,
O. T.
, and
Matizamhuka
,
W. R.
,
2020
, “
Laser Powder Bed Fusion of Potential Superalloys: A Review
,”
Metals
,
11
(
1
), p.
58
.
30.
Lee
,
S.
,
Peng
,
J.
,
Shin
,
D.
, and
Choi
,
Y. S.
,
2019
, “
Data Analytics Approach for Melt-Pool Geometries in Metal Additive Manufacturing
,”
Sci. Technol. Adv. Mater.
,
20
(
1
), pp.
972
978
.
31.
Xu
,
L.
,
Skoularidou
,
M.
,
Cuesta-Infante
,
A.
, and
Veeramachaneni
,
K.
,
2019
, “
Modeling Tabular Data Using Conditional GAN
,”
Proceedings of the 33rd International Conference on Neural Information Processing Systems
,
Vancouver, BC, Canada
,
Dec. 8–14
, pp.
1
15
.
32.
Sattar
,
N. S.
, and
Arifuzzaman
,
S.
,
2021
, “
COVID-19 Vaccination Awareness and Aftermath: Public Sentiment Analysis on Twitter Data and Vaccinated Population Prediction in the USA
,”
Appl. Sci.
,
11
(
13
), p.
6128
.
33.
Sattar
,
N. S.
, and
Arifuzzaman
,
S.
,
2020
, “
Community Detection Using Semi-Supervised Learning With Graph Convolutional Network on GPUs
,”
Proceedings of the 2020 IEEE International Conference on Big Data, Big Data 2020
,
Atlanta, GA
,
Dec. 10–13
, pp.
5237
5246
.
34.
Pedregosa
,
F.
,
Michel
,
V.
,
Grisel Oliviergrisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Vanderplas
,
J.
, et al
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
(
85
), pp.
2825
2830
.
35.
Sattar
,
N. S.
,
Arifuzzaman
,
S.
,
Zibran
,
M. F.
, and
Sakib
,
M. M.
,
2019
, “
Detecting Web Spam in Webgraphs With Predictive Model Analysis
,”
Proceedings of the 2019 IEEE International Conference on Big Data, Big Data 2019
,
Los Angeles, CA
,
Dec. 9–12
, pp.
4299
4308
.
36.
Rahman
,
M. S.
,
Schilling
,
P. J.
,
Herrington
,
P. D.
, and
Chakravarty
,
U. K.
,
2021
, “
Heat Transfer and Melt-Pool Evolution During Powder-Bed Fusion of Ti-6Al-4V Parts Under Various Laser Irradiation Conditions
,”
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
,
Virtual, Online
,
Nov. 16–19
,
pp. 1-9
.
37.
Rahman
,
M. S.
,
2020
, “
Thermo-Fluid Characterizations of the Powder-Bed Fusion Additive Manufacturing Processes Using Laser and Electron Beam
,” Ph.D. Dissertation, University of New Orleans, New Orleans, LA.
38.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2007
,
Global Sensitivity Analysis: The Primer
,
John Wiley & Sons, Ltd
, pp.
237
275
.
39.
Zhou
,
X.
,
Lin
,
H.
, and
Lin
,
H.
,
2008
, “Global Sensitivity Analysis,”
Encyclopedia of GIS
,
S.
Shekhar
, and
H.
Xiong
, eds.,
Springer US
,
Boston, MA
, pp.
408
409
.
40.
Ahmed
,
R. U.
,
Alam
,
C. S.
, and
Rahman
,
M. S.
,
2024
, “
Application of Machine Learning in Process Analysis of the Friction-Stir Welding Technique
,”
Proceedings of the ASME 2023 International Mechanical Engineering Congress and Exposition. Volume 4: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology
,
New Orleans, LA
,
Oct. 29–Nov. 2
, pp.
1
9
.
You do not currently have access to this content.