Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Ballast cleaning machines play a pivotal role in maintaining the stability and safety of railway tracks by transferring and redistributing ballast on the tracks. However, the wear plates used in these machines are subjected to extreme conditions, making the assessment of their wear performance crucial. This study scrutinizes the wear performance of two distinct 31Ni10Cr3Mo6 based alloy steels used as wear plates in the ballast cleaning machines. The study compares the initial microstructure and wear properties of German grade steel (Plasser) wear plate with an indigenous grade steel (RDSO) used as an alternative. The results indicate that the indigenous wear plate consistently exhibits higher weight loss across various loading conditions, whereas the Plasser wear plate demonstrates superior wear resistance, particularly at higher loads. This enhanced performance is attributed to relatively larger amount of high-angle grain boundaries, small grain size, and variations in micro-alloying elements. The compositional analysis indicates low carbon content in both wear plates. The microstructural analysis shows that both samples have a single body-centered cubic crystal structure, with a randomly distributed heterogeneous ferritic and cementite phases in a lath-bainitic microstructure. This comprehensive study provides valuable insights into the wear behavior of these alloy steels, contributing to the optimization of alloying materials and desired microstructure for the wear plates in ballast cleaning machines.

References

1.
Guo
,
Y.
,
Markine
,
V.
, and
Jing
,
G.
,
2021
, “
Review of Ballast Track Tamping: Mechanism, Challenges and Solutions
,”
Constr. Build. Mater.
,
300
, p.
123940
.
2.
CAG India
,
2015
, “Review on “Procurement and Utilization of Track Machines in Indian Railways”,” https://cag.gov.in/uploads/download_audit_report/2015/Union_Compliance_Railways_Report_24Vol2_2015_chap_2.pdf.
3.
Fara
,
A.
,
2014
, “Transition Zones for Railway Bridges—A Study of the Sikån Bridge,” https://api.semanticscholar.org/CorpusID:220618324.
4.
Olofsson
,
U.
, and
Telliskivi
,
T.
,
2003
, “
Wear, Plastic Deformation and Friction of Two Rail Steels—A Full-Scale Test and a Laboratory Study
,”
Wear
,
254
(
1–2
), pp.
80
93
.
5.
Pandey
,
M.
, and
Rao
,
P. S.
,
2020
, “
Indigenization of Track Tamping Machines for Indian Railway
,”
Int. J. Innov. Technol. Explor.
,
9
(
4
), pp.
2105
2109
.
6.
Santos
,
R.
, and
Teixeira
,
P. F.
,
2012
, “
Heuristic Analysis of the Effective Range of a Track Tamping Machine
,”
J. Infrastruct. Syst.
,
18
(
4
), pp.
314
322
.
7.
Grassie
,
S.
,
Nilsson
,
P.
,
Bjurstrom
,
K.
,
Frick
,
A.
, and
Hansson
,
L. G.
,
2002
, “
Alleviation of Rolling Contact Fatigue on Sweden's Heavy Haul Railway
,”
Wear
,
253
(
1–2
), pp.
42
53
.
8.
Plasser
,
2020
, “Operating Manual RM80-92U, India,” http://www.annalsofgeophysics.eu/index.php/annals/article/view/3560.
9.
Horníček
,
L.
,
Tyc
,
P.
,
Lidmila
,
M.
,
Krejčiříková
,
H.
,
Jasanský
,
P.
, and
Břešt’ovský
,
P.
,
2010
, “
An Investigation of the Effect of Under-Ballast Reinforcing Geogrids in Laboratory and Operating Conditions
,”
Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
,
224
(
4
), pp.
269
277
.
10.
2017
, “Specification of Wear Plate for Cutting Trough of FRM-80 (Part No. SU1702.21.1.27, SU1702.21.1.28 & SU1702.21.3.19),” Lucknow, India, https://rdso.indianrailways.gov.in/works/uploads/File/TMHM6 399(1).pdf.
11.
Mesa G
,
D. H.
,
Vásquez-Chacón
,
I. A.
,
Gómez-Guarneros
,
M. A.
,
Sanchez-Tizapantzi
,
P.
, and
Gallardo-Hernández
,
E. A.
,
2022
, “
A Pin-on-Disk Wear Map of Rail and Wheel Materials From Different Standards
,”
Mater. Lett.
,
307
, p.
131021
.
12.
Przybyłowicz
,
M.
,
Sysyn
,
M.
,
Gerber
,
U.
,
Kovalchuk
,
V.
, and
Fischer
,
S.
,
2022
, “
Comparison of the Effects and Efficiency of Vertical and Side Tamping Methods for Ballasted Railway Tracks
,”
Constr. Build. Mater.
,
314
, p.
125708
.
13.
Wang
,
C.
,
Li
,
X.
,
Chang
,
Y.
,
Han
,
S.
, and
Dong
,
H.
,
2016
, “
Comparison of Three-Body Impact Abrasive Wear Behaviors for Quenching–Partitioning–Tempering and Quenching–Tempering 20Si2Ni3 Steels
,”
Wear
,
362–363
, pp.
121
128
.
14.
Korolev
,
V.
,
Loktev
,
A.
,
Shishkina
,
I.
,
Zapolnova
,
E.
,
Kuskov
,
V.
,
Basovsky
,
D.
, and
Aktisova
,
O.
,
2019
, “
Technology of Crushed Stone Ballast Cleaning
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
403
(
1
), p.
012194
.
15.
Krawczyk
,
J.
,
Bembenek
,
M.
, and
Pawlik
,
J.
,
2021
, “
The Role of Chemical Composition of High-Manganese Cast Steels on Wear of Excavating Chain in Railway Shoulder Bed Ballast Cleaning Machine
,”
Materials
,
14
(
24
), p.
7794
.
16.
Leon
,
Z.
,
2006
, “
Ballast Cleaning a Prerequisite for a Sustainable, Reliable, Safe and Cost-Effective Railway Track
,”
Civ. Eng. Siviele Ingenieurswese
,
2006
, pp.
20
23
.
17.
Borkovcová
,
A.
,
Borecký
,
V.
,
Artagan
,
S. S.
, and
Ševčík
,
F.
,
2021
, “
Quantification of the Mechanized Ballast Cleaning Process Efficiency Using GPR Technology
,”
Remote Sens.
,
13
(
8
), p.
1510
.
18.
Lichtberger
,
B.
,
2011
,
Track Compendium: Track System, Substructure, Maintenance, Economics
, 2nd ed.,
Eurailpress
,
Hamburg, Germany
.
19.
Zhou
,
Y.
,
Peng
,
J. F.
,
Wang
,
W. J.
,
Jin
,
X. S.
, and
Zhu
,
M. H.
,
2016
, “
Slippage Effect on Rolling Contact Wear and Damage Behavior of Pearlitic Steels
,”
Wear
,
362–363
, pp.
78
86
.
20.
Seo
,
J. W.
,
Jun
,
H. K.
,
Kwon
,
S. J.
, and
Lee
,
D. H.
,
2016
, “
Rolling Contact Fatigue and Wear of Two Different Rail Steels Under Rolling-Sliding Contact
,”
Int. J. Fatigue
,
83
(
Part 2
), pp.
184
194
.
21.
Maya-Johnson
,
S.
,
Felipe Santa
,
J.
, and
Toro
,
A.
,
2017
, “
Dry and Lubricated Wear of Rail Steel Under Rolling Contact Fatigue—Wear Mechanisms and Crack Growth
,”
Wear
,
380–381
, pp.
240
250
.
22.
Misar
,
H.
,
2005
, “Criteria for Cost-Effective Ballast Cleaning : Machine Design Considerations,”
Rail Eng. Int. Ed.
, Vol.
34
,
De Rooi Publications
, pp.
11
16
.
23.
Bin Osman
,
M. H.
,
Kaewunruen
,
S.
, and
Jack
,
A.
,
2018
, “
Optimisation of Schedules for the Inspection of Railway Tracks
,”
Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
,
232
(
6
), pp.
1577
1587
.
24.
Zhao
,
X. J.
,
Guo
,
J.
,
Wang
,
H. Y.
,
Wen
,
Z. F.
,
Liu
,
Q. Y.
,
Zhao
,
G. T.
, and
Wang
,
W. J.
,
2016
, “
Effects of Decarburization on the Wear Resistance and Damage Mechanisms of Rail Steels Subject to Contact Fatigue
,”
Wear
,
364–365
, pp.
130
143
.
25.
Kaewunruen
,
S.
, and
Chiengson
,
C.
,
2018
, “
Railway Track Inspection and Maintenance Priorities Due to Dynamic Coupling Effects of Dipped Rails and Differential Track Settlements
,”
Eng. Fail. Anal.
,
93
, pp.
157
171
.
26.
Varandas
,
J. N.
,
Hölscher
,
P.
, and
Silva
,
M. A.
,
2014
, “
Settlement of Ballasted Track Under Traffic Loading: Application to Transition Zones
,”
Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
,
228
(
3
), pp.
242
259
.
27.
Jiang
,
H.
,
Li
,
Y.
,
Wang
,
Y.
,
Yao
,
K.
,
Yao
,
Z.
,
Xue
,
Z.
, and
Geng
,
X.
,
2022
, “
Dynamic Performance Evaluation of Ballastless Track in High-Speed Railways Under Subgrade Differential Settlement
,”
Transp. Geotech.
,
33
, p.
100721
.
28.
Zerbst
,
U.
,
Madia
,
M.
,
Klinger
,
C.
,
Bettge
,
D.
, and
Murakami
,
Y.
,
2019
, “
Defects as a Root Cause of Fatigue Failure of Metallic Components. III: Cavities, Dents, Corrosion Pits, Scratches
,”
Eng. Fail. Anal.
,
97
, pp.
759
776
.
29.
Zhang
,
M.
,
Liu
,
M. H.
, and
Jiang
,
L.
,
2014
, “
Improve the Efficiency of RM80 Ballast Cleaning Machine
,”
Adv. Mater. Res.
,
915–916
, pp.
1536
1539
.
30.
Ge
,
S.
,
Wang
,
Q.
, and
Wang
,
J.
,
2017
, “
The Impact Wear-Resistance Enhancement Mechanism of Medium Manganese Steel and Its Applications in Mining Machines
,”
Wear
,
376–377
(
Part B
), pp.
1097
1104
.
31.
Gola
,
A. M.
,
Ghadamgahi
,
M.
, and
Ooi
,
S. W.
,
2017
, “
Microstructure Evolution of Carbide-Free Bainitic Steels Under Abrasive Wear Conditions
,”
Wear
,
376–377
(
Part B
), pp.
975
982
.
32.
Lim
,
S. C.
, and
Ashby
,
M. F.
,
1987
, “
Overview No. 55: Wear-Mechanism Maps
,”
Acta Metall.
,
35
(
1
), pp.
1
24
.
33.
Hutchings
,
I. M.
,
1992
, “
Tribology: Friction and Wear of Engineering Materials
,”
Mater. Des.
,
13
(
3
), p.
187
.
34.
Pashangeh
,
S.
,
Karimi Zarchi
,
H. R.
,
Ghasemi Banadkouki
,
S. S.
, and
Somani
,
M. C.
,
2019
, “
Detection and Estimation of Retained Austenite in a High Strength Si-Bearing Bainite-Martensite-Retained Austenite Micro-Composite Steel After Quenching and Bainitic Holding (Q&B)
,”
Metals (Basel)
,
9
(
5
), p.
492
.
35.
Zhang
,
Y.
,
Zhang
,
C.
,
Yuan
,
X.
,
Li
,
D.
,
Yin
,
Y.
, and
Li
,
S.
,
2019
, “
Microstructure Evolution and Orientation Relationship of Reverted Austenite in 13Cr Supermartensitic Stainless Steel During the Tempering Process
,”
Materials
,
12
(
4
), p.
589
.
36.
Zhang
,
Y.
,
Zhong
,
Y.
,
Lv
,
C.
,
Tan
,
L.
,
Yuan
,
X.
, and
Li
,
S.
,
2019
, “
Effect of Carbon Partition in the Reverted Austenite of Supermartensitic Stainless Steel
,”
Mater. Res. Express
,
6
(
8
), p.
086518
.
37.
Hunkel
,
M.
,
Dong
,
J.
,
Epp
,
J.
,
Kaiser
,
D.
,
Dietrich
,
S.
,
Schulze
,
V.
,
Rajaei
,
A.
,
Hallstedt
,
B.
, and
Broeckmann
,
C.
,
2020
, “
Comparative Study of the Tempering Behavior of Different Martensitic Steels by Means of In-Situ Diffractometry and Dilatometry
,”
Materials
,
13
(
22
), p.
5058
.
38.
Lowe-Ma
,
C. K.
,
Donlon
,
W. T.
, and
Dowling
,
W. E.
,
2001
, “
Comments on Determining X-ray Diffraction-Based Volume Fractions of Retained Austenite in Steels
,”
Powder Diffr.
,
16
(
4
), pp.
198
204
.
39.
de Diego-Calderón
,
I.
,
Sabirov
,
I.
,
Molina-Aldareguia
,
J. M.
,
Föjer
,
C.
,
Thiessen
,
R.
, and
Petrov
,
R. H.
,
2016
, “
Microstructural Design in Quenched and Partitioned (Q&P) Steels to Improve Their Fracture Properties
,”
Mater. Sci. Eng. A
,
657
, pp.
136
146
.
40.
Lu
,
J.
,
Yu
,
H.
,
Kang
,
P.
,
Duan
,
X.
, and
Song
,
C.
,
2018
, “
Study of Microstructure, Mechanical Properties and Impact-Abrasive Wear Behavior of Medium-Carbon Steel Treated by Quenching and Partitioning (Q&P) Process
,”
Wear
,
414–415
, pp.
21
30
.
41.
Somani
,
M. C.
,
Porter
,
D. A.
,
Karjalainen
,
L. P.
, and
Misra
,
R. D. K.
,
2014
, “
On Various Aspects of Decomposition of Austenite in a High-Silicon Steel During Quenching and Partitioning
,”
Metall. Mater. Trans. A
,
45
(
3
), pp.
1247
1257
.
42.
Hidalgo
,
J.
,
Findley
,
K. O.
, and
Santofimia
,
M. J.
,
2017
, “
Thermal and Mechanical Stability of Retained Austenite Surrounded by Martensite With Different Degrees of Tempering
,”
Mater. Sci. Eng. A
,
690
, pp.
337
347
.
43.
Li
,
Q.
,
Zhang
,
Y.
, and
Luo
,
H.
,
2023
, “
Impact Abrasive Wear Behaviour of the Multiphase Microstructure in a Medium Carbon Quenched and Partitioned Bainitic Steel
,”
Wear
,
518–519
, p.
204644
.
44.
Yan
,
X.
,
Hu
,
J.
,
Zhang
,
X.
, and
Xu
,
W.
,
2023
, “
Macroscopic and Nanoscale Investigation of the Enhanced Wear Properties of Medium-Mn Steel Processed Via Room-Temperature Quenching and Partitioning
,”
Wear
,
522
, p.
204711
.
45.
Haiko
,
O.
,
Pallaspuro
,
S.
,
Javaheri
,
V.
,
Kaikkonen
,
P.
,
Ghosh
,
S.
,
Valtonen
,
K.
,
Kaijalainen
,
A.
, and
Kömi
,
J.
,
2023
, “
High-Stress Abrasive Wear Performance of Medium-Carbon Direct-Quenched and Partitioned, Carbide-Free Bainitic, and Martensitic Steels
,”
Wear
,
526–527
, p.
204925
.
46.
Sharma
,
S.
,
Sangal
,
S.
, and
Mondal
,
K.
,
2014
, “
Reciprocating Sliding Wear Behavior of Newly Developed Bainitic Steels
,”
Metall. Mater. Trans. A
,
45
(
12
), pp.
5451
5468
.
47.
Kato
,
K.
,
2000
, “
Wear in Relation to Friction—A Review
,”
Wear
,
241
(
2
), pp.
151
157
.
48.
Zhou
,
L.
,
Liu
,
G.
,
Ma
,
X. L.
, and
Lu
,
K.
,
2008
, “
Strain-Induced Refinement in a Steel With Spheroidal Cementite Subjected to Surface Mechanical Attrition Treatment
,”
Acta Mater.
,
56
(
1
), pp.
78
87
.
49.
Sundström
,
A.
,
Rendón
,
J.
, and
Olsson
,
M.
,
2001
, “
Wear Behaviour of Some Low Alloyed Steels Under Combined Impact/Abrasion Contact Conditions
,”
Wear
,
250
(
1–12
), pp.
744
754
.
50.
Izciler
,
M.
, and
Tabur
,
M.
,
2006
, “
Abrasive Wear Behavior of Different Case Depth Gas Carburized AISI 8620 Gear Steel
,”
Wear
,
260
(
1–2
), pp.
90
98
.
51.
Wasiak
,
K.
,
Węsierska-Hinca
,
M.
,
Skołek
,
E.
,
Rożniatowski
,
K.
,
Wieczorek
,
A.
, and
Świątnicki
,
W. A.
,
2023
, “
Effect of Austempering Time on Multiphase Microstructure Evolution and Properties of Carburized Cr-Mn-Si Alloyed Steel Subjected to Bainitization Quenching & Partitioning Heat Treatment
,”
J. Alloys Compd.
,
966
(
1–2
), p.
171489
.
52.
Modi
,
O. P.
,
Mondal
,
D. P.
,
Prasad
,
B. K.
,
Singh
,
M.
, and
Khaira
,
H. K.
,
2003
, “
Abrasive Wear Behaviour of a High Carbon Steel: Effects of Microstructure and Experimental Parameters and Correlation With Mechanical Properties
,”
Mater. Sci. Eng. A
,
343
(
1–2
), pp.
235
242
.
53.
Rai
,
P. K.
,
Shekhar
,
S.
, and
Mondal
,
K.
,
2018
, “
Effects of Grain Size Gradients on the Fretting Wear of a Specially-Processed Low Carbon Steel Against AISI E52100 Bearing Steel
,”
Wear
,
412–413
(
1–2
), pp.
1
13
.
54.
Jung
,
B.
,
Lee
,
H.
, and
Park
,
H.
,
2013
, “
Effect of Grain Size on the Indentation Hardness for Polycrystalline Materials by the Modified Strain Gradient Theory
,”
Int. J. Solids Struct.
,
50
(
18
), pp.
2719
2724
.
55.
Zhai
,
W.
,
Bai
,
L.
,
Zhou
,
R.
,
Fan
,
X.
,
Kang
,
G.
,
Liu
,
Y.
, and
Zhou
,
K.
,
2021
, “
Recent Progress on Wear-Resistant Materials: Designs, Properties, and Applications
,”
Adv. Sci.
,
8
(
11
), p.
2003739
.
56.
Zhao
,
Y. H.
,
Liao
,
X. Z.
,
Jin
,
Z.
,
Valiev
,
R. Z.
, and
Zhu
,
Y. T.
,
2004
, “
Microstructures and Mechanical Properties of Ultrafine Grained 7075 Al Alloy Processed by ECAP and Their Evolutions During Annealing
,”
Acta Mater.
,
52
(
15
), pp.
4589
4599
.
57.
Knaislová
,
A.
,
Rudomilova
,
D.
,
Novák
,
P.
,
Prošek
,
T.
,
Michalcová
,
A.
, and
Beran
,
P.
,
2019
, “
Critical Assessment of Techniques for the Description of the Phase Composition of Advanced High-Strength Steels
,”
Materials
,
12
(
24
), p.
4033
.
58.
Speer
,
J.
,
Matlock
,
D. K.
,
De Cooman
,
B. C.
, and
Schroth
,
J. G.
,
2003
, “
Carbon Partitioning Into Austenite After Martensite Transformation
,”
Acta Mater.
,
51
(
9
), pp.
2611
2622
.
59.
Wen
,
E.
,
Song
,
R.
, and
Xiong
,
W.
,
2019
, “
Effect of Tempering Temperature on Microstructures and Wear Behavior of a 500 HB Grade Wear-Resistant Steel
,”
Metals (Basel)
,
9
(
1
), p.
45
.
You do not currently have access to this content.