Optimal design methods that use continuum mechanics models are capable of generating suitable topology, shape, and dimensions of compliant mechanisms for desired specifications. Synthesis procedures that use linear elastic finite element models are not quantitatively accurate for large displacement situations. Also, design specifications involving nonlinear force-deflection characteristics and generation of a curved path for the output port cannot be realized with linear models. In this paper, the synthesis of compliant mechanisms is performed using geometrically nonlinear finite element models that appropriately account for large displacements. Frame elements are chosen because of ease of implementation of the general approach and their ability to capture bending deformations. A method for nonlinear design sensitivity analysis is described. Examples are included to illustrate the usefulness of the synthesis method.

1.
Howell
,
L.
, and
Midha
,
A.
,
1996
, “
A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
, No.
1
, pp.
121
125
.
2.
Saxena
,
A.
, and
Kramer
,
S. N.
,
1998
, “
A Simple and Accurate Method for Determining Large Deflections in Compliant Mechanisms Subjected to End Forces and Moments
,”
ASME J. Mech. Des.
,
120
, No.
3
, pp.
392
400
.
3.
Ananthasuresh, G. K., Kota, S., and Kikuchi, N., 1994, “Strategies for Systematic Synthesis of Compliant MEMS,” Proc. of the 1994 ASME Winter Annual Meeting, Nov. 1994, Chicago, IL, pp. 677–686.
4.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
N.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
pp.
238
245
.
5.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
,
25
, No.
4
, pp.
495
526
.
6.
Saxena, A., Wang, X., and Ananthasuresh, G. K., 2000, “PennSyn: A Topology Synthesis Software for Compliant Mechanisms DETC/MECH-14139,” ASME Design Engineering Technical Conferences, September, 10–13, Baltimore, MD.
7.
Nishiwaki
,
S.
,
Frecker
,
M. I.
,
Min
,
S.
, and
Kikuchi
,
N.
,
1998
, “
Topology Optimization of Compliant Mechanisms using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
,
42
, pp.
535
559
.
8.
Saxena, A., and Ananthasuresh, G. K., 1998, “An Optimality Criteria Approach for the Topology Synthesis of Compliant Mechanisms-DETC/’99 DAC,” Proceedings of the DETC’98, ASME Design, Engineering Technical Conference, Sept. 13–16, Atlanta, Georgia, DETC98/MECH-5937.
9.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2000
, “
On an Optimal Property of Compliant Mechanisms
,”
Struct. Multidisciplinary Optim.
,
19
, No.
1
, pp.
36
49
.
10.
Larsen, V. D., Sigmund, O., and Bouwstra, S., 1996, “Design and Fabrication of Compliant Mechanisms and Structures with Negative Poisson’s Ratio,” IEEE, International Workshop on Micro Electro Mechanical Systems, MEMS-96.
11.
Hetrick
,
J. A.
, and
Kota
,
S.
,
1999
, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
121
, No.
2
, pp.
229
234
.
12.
Bruns, T. E., and Tortorelli, D. A., 1998, “Topology Optimization of Geometrically Nonlinear Structures and Compliant Mechanisms,” Proc. of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA-98-4950, pp. 1874–1882.
13.
Buhl
,
T.
,
Claus
,
B.
,
Pedersen
,
W.
, and
Sigmund
,
O.
,
1999
, “Stiffness Design of Geometrically Nonlinear Structures using Topology Optimization,” DCAMM Report No 614, Danish Center for Applied Mathematics and Mechanics, Apr. 1999.
14.
Pedersen, C., Buhl, T., and Sigmund, O., 1999, “Topology Synthesis of Large Displacement Compliant Mechanisms,” Proceedings of 1999 ASME-DETC, Las Vegas, September, DETC99/DAC-8554.
15.
Crisfield, M. A., 1991, Nonlinear Finite Element Analysis of Solids and Structures, Vol. 1, John Wiley & Sons Limited, Baffins Lane, Chichester, PO19 1UD, England.
16.
Bathe, K. J., 1996, Finite Element Procedures, Prentice Hall, Englewood Cliffs, New Jersey 07632.
17.
Matlab™, 2000, The Language of Technical Computing, Student Edition, 5th Ed., The MathWorks Inc., 24 Prime Park Way, Natick, MA, 01760-1500.
18.
ABAQUS™, 1996, Abaqus/Standard User’s Manual, Hibbit, Karlsson & Sorensen, Inc. 1080 Main Street, Pawtucket, RI 02860-4847, Ver. 5.6.
19.
Santos
,
J. L. T.
, and
Choi
,
K. K.
,
1992
, “
Shape Design Sensitivity Analysis of Nonlinear Structural Systems
,”
Struct. Optim.
,
4
, pp.
23
35
.
20.
Choi
,
K. K.
, and
Huag
,
E. J.
,
1983
, “
Shape Design Sensitivity Analysis of Elastic Structures
,”
J. Struct. Mech.
,
11
, pp.
231
269
.
21.
Choi
,
K. K.
, and
Santos
,
J. L. T.
,
1987
, “
Design Sensitivity Analysis of Nonlinear Structural Systems, Part I: Theory
,”
Int. J. Numer. Methods Eng.
,
24
, pp.
2039
2055
.
22.
Santos
,
J. L. T.
, and
Choi
,
K. K.
,
1988
, “
Sizing Design Sensitivity Analysis of Nonlinear Structural Systems. Part II: Numerical Method
,”
Int. J. Numer. Methods Eng.
,
26
, pp.
2097
2114
.
23.
Ryu
,
Y. S.
,
Haririan
,
M.
,
Wu
,
C. C.
, and
Arora
,
J. S.
,
1985
, “
Structural Design Sensitivity Analysis of Nonlinear Response
,”
Comput. Struct.
,
21
, pp.
245
255
.
24.
Claus
,
B.
,
Pedersen
,
W.
,
Buhl
,
T.
, and
Sigmund
,
O.
,
2000
, “Topology Synthesis of Large Displacement Compliant Mechanisms,” DCAMM Report No 631, Danish Center for Applied Mathematics and Mechanics, Jan. 2000.
25.
Yahya, R., 1999, “One Piece Compliant Disk-Drive Loading Mechanism,” Capstone design project report, Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA.
You do not currently have access to this content.