This investigation deals with singularity analysis of parallel manipulators and their instantaneous behavior while in or close to a singular configuration. The method presented utilizes line geometry tools and screw theory to describe a manipulator in a given position. Then, this description is used to obtain the closest linear complex, presented by its screw coordinates, to the set of governing lines of the manipulator. The linear complex axis and pitch provide additional information and a better physical understanding of the type of singularity and the motion the manipulator tends to perform in a singular point and in its neighborhood. Examples of Hunt’s, Fichter’s and 3-UPU singularities, along with a few selected examples taken from Merlet’s work [1], are presented and analyzed using this method.

1.
Merlet
,
J. P.
,
1992
, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Robot. Res.
,
8
(
5
), pp.
45
56
.
2.
Hunt
,
K. H.
,
1983
, “
Structural Kinematics of In-Parallel-Actuated Robot Arms
,”
ASME J. Mech. Des.
,
105
(
4
), pp.
705
712
.
3.
St-Onge
,
B. M.
, and
Gosselin
,
C. M.
,
2000
, “
Singularity Analysis and Representation of the General Gaugh-Stewart Platform
,”
Int. J. Robot. Res.
,
19
(
3
), pp.
271
288
.
4.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T. S.
,
1998
, “
Singularity-Free Path Planning for the Stewart Platform Manipulator
,”
Mech. Mach. Theory
,
33
(
6
), pp.
711
725
.
5.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
6.
Zlatanov, D., Fenton, R. G., and Benhabib, B., 1994, “Singularity Analysis of Mechanisms and Robots via a Motion-Space Model of the Instantaneous Kinematics,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 2, pp. 980–991.
7.
Ma
,
O.
, and
Angeles
,
J.
,
1992
, “
Architecture Singularities of Parallel Manipulators
,”
Int. J. Robot. Res.
,
7
(
1
), pp.
23
29
.
8.
Mohammadi Daniali
,
H. R.
,
Zsombor-Murray
,
P. J.
, and
Angeles
,
J.
,
1955
, “
The Isotropic Design of Two General Classes of Planar Parallel Manipulators
,”
J. Rob. Syst.
,
12
(
2
), pp.
795
805
.
9.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
,
1995
, “
A Unifying Framework for Classification and Interpretation of Mechanism Singularities
,”
ASME J. Mech. Des.
,
117
, pp.
566
572
.
10.
Mayer St-Onge, B., and Gosselin, C. M., 1996, “Singularity Analysis and Representation of Spatial Six-Degree of Freedom Parallel Manipulator,” Advances in Robot Kinematics (ARK), J. Lenarcic and V. Parenti-Castelli, eds., Kluwer Academic Publisher, pp. 389–398.
11.
Sefrioui
,
J.
, and
Gosselin
,
C. M.
,
1995
, “
On the Quadratic Nature of the Singularity Curves of Planar Three-Degree-of-Freedom Parallel Manipulators
,”
Mech. Mach. Theory
,
30
(
4
), pp.
533
551
.
12.
Collins
,
C. L.
, and
McCarthy
,
J. M.
,
1998
, “
The Quartic Singularity Surface of Planar Platforms in the Clifford Algebra of the Projective Plane
,”
Mech. Mach. Theory
,
33
(
7
), pp.
931
944
.
13.
Feng-Cheng
,
Y.
, and
Haug
,
E. J.
,
1994
, “
Numerical Analysis of the Kinematic Working Capability of Mechanisms
,”
ASME J. Mech. Des.
,
116
, pp.
111
117
.
14.
Funabashi, H., and Takeda, Y., 1995, “Determination of Singular Points and Their Vicinity in Parallel Manipulators Based on the Transmission Index,” Ninth World Congress on the Theory of Machines and Mechanisms, pp. 1977–1981.
15.
Karger, A., and Husty, M., 1996, “On Self-Motion of a Class of Parallel Manipulators,” Advances in Robot Kinematics, J. Lenarcic and V. Parenti-Castelli, eds., Kluwer Academic Publisher, pp. 339–348.
16.
Karger, A., 1998, “Architecture Singular Parallel Manipulators,” Advanced in Robot Kinematics: Analysis and Control, J. Lenarcic and M. L. Husty, eds., Kluwer Academic Publisher, pp. 445–454.
17.
Merlet, J. P., 1989, “Parallel Manipulators Part 2: Theory, Singular Configurations and Grassmann Geometry,” Rapport de Recherche INRIA No 791, F’evrier.
18.
Merlet, J. P., 1992, “On the Infinitesimal Motion of a Parallel Manipulator in Singular Configurations,” IEEE Int. Conf. on Robotics and Automation, pp. 320–325, Nice, France.
19.
Fichter
,
E. F.
,
1986
, “
A Stewart Platform-Based Manipulator: General Theory and Practical Construction
,”
Int. J. Robot. Res.
,
5
(
2
), pp.
155
182
.
20.
Collins
,
C. L.
, and
Long
,
G. L.
,
1995
, “
The Singularity Analysis of an In-Parallel Hand Controller for Force-Reflected Teleoperation
,”
IEEE Trans. Rob. Autom.
,
11
(
5
), pp.
661
669
.
21.
Dandurand
,
A.
,
1984
, “
The Rigidity of Compound Spatial Grid
,”
Structural Topology
,
10
, pp.
41
55
.
22.
Ben Horin, R., 1997, “Criteria for Analysis of Parallel Robots,” Doctoral Dissertation, Technion-Israeli Institute of Technology.
23.
Simaan
,
N.
, and
Shoham
,
M.
,
2001
, “
Singularity Analysis of a Class of Composite Serial In-Parallel Robots
,”
IEEE Trans. Rob. Autom.
,
17
(
3
), pp.
301
311
.
24.
Hao
,
F.
, and
McCarthy
,
J. M.
,
1998
, “
Conditions for Line-Based Singularities in Spatial Platform Manipulators
,”
J. Rob. Syst.
,
15
(
1
), pp.
43
55
.
25.
Hunt, K. H., 1978, “Kinematic Geometry of Mechanisms,” Department of Mechanical Engineering, Monash University, Clayton, Victoria, Australia.
26.
Pottmann
,
H.
,
Peternell
,
M.
, and
Ravani
,
B.
,
1999
, “
An Introduction to Line Geometry With Applications
,”
Comput.-Aided Des.
,
31
, pp.
3
16
.
27.
Klein
,
F.
,
1871
, “
Uber Liniengeometrie und Metrische Geometrie
,”
Mathematische Annalen
,
pp.
257
303
.
28.
Ball, R. S., 1900, A Treatise on the Theory of Screws, Cambridge University Press, Cambridge.
29.
Ciblak, N., and Lipkin, H., 1999, “Synthesis of Cartesian Stiffness for Robotic Applications,” Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, Michigan., pp. 2147–2152.
30.
Tsai
,
L.-W.
, and
Joshi
,
S.
,
2000
, “
Kinematics and Optimization of a Spatial 3-UPU Parallel Manipulator
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
439
446
.
31.
Tsai, L.-W., 1996, “Kinematics of a Three-DOF Platform With Three Extensible Limbs,” Advances in Robot Kinematics (ARK), J. Lenarcic and V. Parenti-Castelli, eds., Kluwer Academic Publisher, pp. 401–410.
32.
Di Gregorio
,
R.
, and
Parenti-Castelli
,
V.
,
2002
, “
Mobility Analysis of the 3-UPU Parallel Mechanism Assembled in a Pure Translational Motion
,”
ASME J. Mech. Des.
,
124
, pp.
259
264
.
33.
Tsai, L.-W., 1998, “The Jacobian Analysis of a Parallel Manipulator Using Reciprocal Screws,” Advances in Robot Kinematics (ARK): Analysis and Control, Lenarcic, J., and Husty, M. L., eds., Kluwer Academic Publishers, pp. 327–336.
34.
Parenti-Castelli
,
V.
,
Di Gregorio
,
R.
, and
Bubani
,
F.
,
2000
, “
Workspace and Optimal Design of a Pure Translation Parallel Manipulator
,”
Meccanica
35
, pp.
203
214
; (anche presentato al 14th Italian Congress on Theoretical and Applied Mechanics AIMETA, Como, Italy, October 6–9, 1999).
35.
Sommerville, D. M. Y., 1934, Analytical Geometry of Three Dimensions, Cambridge University press.
36.
Bonev, I., and Zlatanov, D., 2001, “The Mystery of the Singular SNU Translational Parallel Robot,” http://www.parallemic.org/Reviews/Review004.html.
37.
Zlatanov, D., Bonev, I., and Gosselin, C., 2001, “Constraint Singularities as Configuration Space Singularities,” http://www.parallemic.org/Reviews/Review008.html.
You do not currently have access to this content.