Weighting coefficients are used in analytical target cascading (ATC) at each element of the hierarchy to express the relative importance of (a) matching targets passed from the parent element and (b) maintaining consistency of linking variables and consistency with designs achieved by subsystem child elements. Proper selection of weight values is crucial when the top-level targets are unattainable, for example when “stretch” targets are used. In this case, strict design consistency cannot be achieved with finite weights; however, it is possible to achieve arbitrarily small inconsistencies. This article presents an iterative method for finding weighting coefficients that achieve solutions within user-specified inconsistency tolerances and demonstrates its effectiveness with several examples. The method also led to reduced computational time in the demonstration examples.

1.
Kim
,
H. M.
,
2003
, “
Target Cascading in Optimal System Design
,”
J. Mech. Des.
,
125
(
3
), pp.
474
480
.
2.
Michelena
,
N.
,
Park
,
H.
, and
Papalambros
,
P.
,
2003
, “
Convergence Properties of Analytical Target Cascading
,”
AIAA J.
,
41
(
5
), pp.
897
905
.
3.
Michalek, J. J., and Papalambros, P. Y., 2005, “Weights, Norms, and Notation in Analytical Target Cascading,” J. Mech. Des., to appear.
4.
Papalambros, P. Y., and Wilde, D. J., 2000, Principles of Optimal Design: Modeling and Computation, 2nd Edition, Cambridge Univ. Press, New York, 2000.
5.
Shima
,
T.
, and
Haimes
,
Y. Y.
,
1984
, “
The Convergence Properties of Hierarchical Overlapping Coordination
,”
IEEE Trans. Syst. Man Cybern.
,
SMC-14
(
1
), pp.
74
87
.
6.
Park
,
H.
,
Michelena
,
N.
,
Kulkarni
,
D.
, and
Papalambros
,
P. Y.
,
2001
, “
Convergence Criteria for Hierarchical Overlapping Coordination Under Linear Constraints
,”
Comput. Optim. Appl.
,
18
(
3
), pp.
273
293
.
7.
Michelena
,
N.
,
Papalambros
,
P.
,
Park
,
H. A.
, and
Kulkarni
,
D.
,
1999
, “
Hierarchical Overlapping Coordination for Large-scale Optimization by Decomposition
,”
AIAA J.
,
37
(
7
), pp.
890
896
.
8.
Kim
,
H. M.
,
Kokkolaras
,
M.
,
Louca
,
L.
,
Delagrammatikas
,
G.
,
Michelena
,
N.
,
Filipi
,
Z.
,
Papalambros
,
P. Y.
, and
Assanis
,
D.
,
2002
, “
Target Cascading in Vehicle Redesign: a Class VI Truck Study
,”
Int. J. Veh. Des.
,
29
(
3
), pp.
199
225
.
9.
Kim
,
H. M.
,
Rideout
,
D. G.
,
Papalambros
,
P. Y.
, and
Stein
,
J. L.
,
2003
, “
Analytical Target Cascading in Automotive Design
,”
J. Mech. Des.
,
125
, pp.
481
489
.
10.
Kokkolaras
,
M.
,
Louca
,
L.
,
Delagrammatikas
,
G.
,
Michelena
,
N.
,
Filipi
,
Z.
,
Papalambros
,
P.
,
Stein
,
J.
, and
Assanis
,
D.
,
2004
, “
Simulation-Based Optimal Design of Heavy Trucks by Model-Based Decomposition: An Extensive Analytical Target Cascading Case Study
,”
Int. J. Heavy Vehicle Syst.
,
11
, pp.
402
432
.
11.
Kokkolaras
,
M.
,
Fellini
,
R.
,
Kim
,
H. M.
,
Michelena
,
N.
, and
Papalambros
,
P.
,
2002
, “
Extension of the Target Cascading Formulation to the Design of Product Families
,”
J. Struct. Multidisciplinary Optim.
,
14
(
4
), pp.
293
301
.
12.
Choudhary, R., 2004, “A Hierarchical Optimization Framework for Simulation-Based Architectural Design,” Ph.D. dissertation, College of Architecture, University of Michigan, Ann Arbor, MI.
13.
Tzevelekos, N., Kokkolaras, M., Papalambros, P. Y., Hulshof, M. F., Etman, L. F. P., and Rooda, J. E., 2003, “An Empirical Local Convergence Study of Alternative Coordination Schemes in Analytical Target Cascading,” Proc. of 5th World Congress on Structural and Multidisciplinary Optimization, Lido di Jesolo-Venice, Italy, May 19–23; short version (short paper proceedings), pp. 147–148; long version (conference CD-ROM).
14.
Braun, R., 1996, “Collaborative Optimization: An Architecture for Large-Scale Distributed Design,” Ph.D. dissertation, Stanford University, Stanford.
15.
Sobieszczanski-Sobieski
,
J.
,
James
,
B. B.
, and
Dovi
,
A. R.
,
1985
, “
Structural Optimization by Multilevel Decomposition
,”
AIAA J.
,
21
, pp.
1291
1299
.
16.
Alexandrov, N. M., and Lewis, R. M., 2000, “Analytical and Computational Aspects of Collaborative Optimization,” NASA/TM-2000-210104.
17.
Kim, H. M., 2001, “Target Cascading in Optimal System Design,” Ph.D. dissertation, Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, MI.
18.
Cramer
,
E.
,
Dennis
,
J.
,
Frank
,
P.
,
Lewis
,
R.
, and
Shubin
,
G.
,
1994
, “
Problem Formulation for Multidisciplinary Optimization
,”
SIAM J. Optim.
,
4
, pp.
754
776
.
19.
Sobieszczanski-Sobieski, J., and Kodiyalam, S., 1999, “BLISS: A New Method for Two-Level Structural Optimization,” Proc. of AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, St. Louis, ASME, New York, Vol. 2, pp. 1274–1286.
20.
Sobieszczanski-Sobieski, J., 1989, “Optimization by Decomposition: a Step From Hierarchic to Non-Hierarchic Systems,” 2nd NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, Hampton, VA, September 28–30, 1988. NASA TM-101494, NASA CP-3031.
21.
Balling, R. J., and Sobieszczanski-Sobieski, J., 1994, “Optimization of Coupled Systems: A Critical Overview of Approaches,” Proc. of 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA, Washington, DC, Panama City, AIAA-94-4330-CP, pp. 753–773.
22.
Lingle, J., and Schiemann, W., 1999, Bullseye!: Hitting Your Strategic Targets Through High-Impact Measurement, Free Press, New York.
You do not currently have access to this content.