This paper brings together line geometry, kinematic geometry of line-symmetric motions, and computer aided geometric design to develop a method for geometric design of rational Be´zier line-symmetric motions. By taking advantage of the kinematic geometry of a line-symmetric motion, the problem of synthesizing a rational Be´zier line-symmetric motion is reduced to that of designing a rational Be´zier ruled surface. In this way, a recently developed de Casteljau algorithm for line-geometric design of ruled surfaces can be applied. An example is presented in which the Bennet motion is represented as a rational Be´zier line-symmetric motion whose basic surface is a hyperboloid.

1.
Ge, Q. J., and Ravani, B., 1991, “Computer Aided Geometric Design of Motion Interpolants,” ASME Publ. DE-Vol. 3202:33-41, Advances in Design Automation 1991; ASME J. Mech. Des., 116, pp. 756–762.
2.
Ge
,
Q. J.
, and
Ravani
,
B.
,
1994a
, “
Geometric Construction of Be´zier Motions
,”
ASME J. Mech. Des.
,
116
, pp.
756
762
.
3.
Barr
,
A.
,
Curin
,
B.
,
Gabriel
,
S.
, and
Hughes
,
J.
,
1992
, “
Smooth Interpolation of Orientations With Angular Velocity Constraints Using Quaternions
,”
Comput. Graphics
,
26
, pp.
313
320
.
4.
Park
,
F. C.
, and
Ravani
,
B.
,
1995
, “
Be´zier Curves on Riemannian Manifolds and Lie Groups With Kinematic Applications
,”
ASME J. Mech. Des.
,
117
, pp.
35
40
.
5.
Kim
,
K.-S.
, and
Nam
,
K.-W.
,
1995
, “
Interpolating Solid Orientations With Circular Blending Quaternion Curves
,”
Comput.-Aided Des.
,
27
, pp.
385
398
.
6.
Etzel, K., and McCarthy, J. M., 1996, “Spatial Motion Interpolation in an Image Space of SO(4),” Proc. 1996 ASME Mechanisms Conference, Paper Number 96-DETC/MECH-1164.
7.
Ju¨ttler
,
B.
, and
Wagner
,
M.
,
1996
, “
Computer Aided Design With Spatial Rational B-Spline Motions
,”
ASME J. Mech. Des.
,
118
, pp.
193
201
.
8.
Ju¨ttler
,
B.
, and
Wagner
,
M.
,
1999
, “
Rational Motion-Based Surface Generation
,”
Comput.-Aided Des.
,
31
, pp.
203
213
.
9.
Zefran
,
M.
, and
Kumar
,
V.
,
1998
, “
Rigid Body Motion Interpolation
,”
Comput.-Aided Des.
,
30
, pp.
179
189
.
10.
Srinivasan
,
L. N.
, and
Ge
,
Q. J.
,
1996
, “
Parametrically Continuous and Smooth Motion Interpolation
,”
ASME J. Mech. Des.
,
118
, pp.
494
498
.
11.
Srinivasan
,
L.
, and
Ge
,
Q. J.
,
1998
, “
Fine Tuning of Rational B-Spline Motions
,”
ASME J. Mech. Des.
,
120
, pp.
46
51
.
12.
Ro¨schel
,
O.
,
1998
, “
Rational Motion Design—A Survey
,”
Comput.-Aided Des.
,
30
, pp.
169
178
.
13.
Ge
,
Q. J.
, and
Sirchia
,
M.
,
1999
, “
Computer Aided Geometric Design of Two-Parameter Freeform Motions
,”
ASME J. Mech. Des.
,
121
, pp.
502
506
.
14.
Ge
,
Q. J.
, and
Larochelle
,
P.
,
1999
, “
Algebraic Motion Approximation With NURBS Motions and Its Application to Spherical Mechanism Synthesis
,”
ASME J. Mech. Des.
,
121
, pp.
529
532
.
15.
Xia
,
J.
, and
Ge
,
Q. J.
,
2001
, “
On the Exact Representation of the Boundary Surfaces of the Swept Volume of a Cylinder Undergoing Rational Bezier and B-Spline Motions
,”
ASME J. Mech. Des.
,
123
, pp.
261
265
.
16.
Study, E., 1903, Die Geometrie der Dynamen, Leipzig.
17.
Klein, F., 1908, Elementary Mathematics From an Advanced Standpoint: Geometry. Translated by E. R. Hedrick and C. A. Noble (1939), Dover, New York.
18.
Krames
,
J.
,
1937
, “
Zur Aufrechten Ellipsenbewegung des Raumes (U¨ber Symmetrische Schotungen III)
,”
Monatshefte Math. Phys.
,
46
, pp.
38
50
.
19.
Yang, A. T., 1964, “Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms,” Ph.D. dissertation, Columbia University, UMI-No. 64-2803.
20.
Woo
,
L.
, and
Freudenstein
,
F.
,
1970
, “
Application of Line Geometry to Theoretical Kinematics and the Kinematic Analysis of Mechanical Systems
,”
J. Mech.
,
5
, pp.
417
460
.
21.
Bottema, O., and Roth, B., 1979, Theoretical Kinematics, North Holland, Amsterdam.
22.
Ro¨schel
,
O.
,
1985
, “
Rationale Ra¨umliche Zwangla¨ufe Vierter Ordnung
,”
Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. 2A
,
194
, pp.
185
202
.
23.
Hunt, K., 1990, Kinematic Geometry of Mechanisms, Oxford University Press, New York.
24.
Ravani
,
B.
, and
Wang
,
J.
,
1991
, “
Computer Aided Geometric Design of Line Constructs
,”
ASME J. Mech. Des.
,
113
, pp.
363
371
.
25.
Ge, Q. J., and Ravani, B., 1998, “Geometric Design of Rational Bezier Line Congruences and Ruled Surfaces Using Line Geometry,” Computing Supplement 13: Geometric Modeling, edited by G. Farin, H. Beiri, G. Brunnett, and T. DeRose, Springer, Berlin, pp. 101–120.
26.
Dooley, J. R., and Ravani, B., 1994, “Geometric Analysis of Spatial Rigid Body Dynamics With Multiple Frictional Contacts,” Advances in Robot Kinematics and Computational Geometry, edited by J. Lenarcic and B. Ravani, Kluwer Academic, Dordrechtt, pp. 71–80.
27.
Sprott, K., and Ravani, B., 1997, “Ruled Surfaces, Lie Groups, and Mesh Generation,” Proc. 1997 Design Automation Conference, Paper no. DETC97/DAC-3996, Sacramento, CA.
28.
Pottmann, H., and Wallner, J., 2001, Computational Line Geometry, Springer, Berlin.
29.
Ge, Q. J., 1996, “Kinematics-Driven Geometric Modeling: A Framework for Simultaneous Tool-Path Generation and Sculptured Surface Design,” Proc. 1996 IEEE Robotics and Automation Conference, Vol. 2, pp. 1819–1824, Minneapolis, MN, April 1996.
30.
Xia, J., and Ge, Q. J., 2000, “Kinematic Approximation of Ruled Surfaces Using NUEBS Motions of a Cylindrical Cutter,” Proc. 2000 ASME Design Automation Conference, Baltimore, MD, Paper No. DETC2000/DAC-14280.
31.
Piegl
,
L. A.
, and
Tiller
,
W.
,
2002
, “
Biarc Approximation of NURBS
,”
Comput.-Aided Des.
,
34
, pp.
807
814
.
32.
McCarthy, J. M., 1990, Introduction to Theoretical Kinematics, MIT Press, Cambridge, MA.
33.
Ball, R., 1900, A Treatise on the Theory of Screws, Cambridge, University, Press Cambridge.
34.
McCarthy
,
J. M.
,
1986
, “
Dual Orthogonal Matrices in Manipulator Kinematics
,”
Int. J. Robot. Res.
,
5
, pp.
43
49
.
35.
Ravani, B., 1982, “Kinematic Mappings as Applied to Motion Approximation and Mechanism Synthesis,” Ph.D. dissertation, Stanford University.
36.
Struik, D. J., 1961, Lectures On Classical Differential Geometry, 2nd ed., Addison-Wesley, Reading, MA.
37.
Ravani
,
B.
, and
Roth
,
B.
,
1984
, “
Mappings of Spatial Kinematics
,”
ASME J. Mech., Trans., Automation, Des.
,
106
, pp.
341
347
.
You do not currently have access to this content.