Current trends in engineering globalization require researchers to revisit various normalized standards that determine “best practices” in industries. This paper presents comparative analysis of tooth-root strength evaluation methods used within ISO and AGMA standards and verifying them with developed models and simulations using the finite element method (FEM). The presented analysis is conducted for (1) wide range of spur and helical gears manufactured using racks or gear tools; and for (2) various combinations of key geometrical (gear design), manufacturing (racks and gear tools), and performance (load location) parameters. FEM of tooth-root strength is performed for each modeled gear. FEM results are compared with stresses calculated based on the ISO and AGMA standards. The comparative analysis for various combinations of design, manufacturing, and performance parameters are illustrated graphically and discussed briefly. The results will allow for a better understanding of existing limitations in the current standards applied in engineering practice as well as provide a basis for future improvements and/or unifications of gear standards.

1.
Ceglarek
,
D.
,
Huang
,
W.
,
Zhou
,
S.
,
Ding
,
Y.
,
Kumar
,
R.
, and
Zhou
,
Y.
, 2004, “
Time-Based Competition in Manufacturing: Stream-of-Variation Analysis (SOVA) Methodology—Review
,”
Int. J. of Flexible Manuf. Syst.
,
16
(
1
), pp.
11
44
.
2.
Anderson
,
N.
et al.
, 2004, “
Gear Industry Vision. A Vision of Gear Industry in 2025
,” Technical Report developed at the Gear Industry Vision Workshop, March 10, 2004, Detroit. The report was prepared by Energetics, Inc., and sponsored by U.S. Army, AGMA Foundation, ASME CRTD, Ben Franklin Technology Center, Boeing, Gleason Foundation, GM, and John Deere.
3.
Dudley
,
D. W.
, 2002,
Handbook of Practical Gear Design
,
CRC
,
Boca Raton, FL
.
4.
Townsend
,
D. P.
, 1992,
Dudley’s Gear Handbook
,
McGraw–Hill
,
New York
.
5.
Smith
,
J. D.
, 1999,
Gear Noise and Vibration
,
Dekker
,
New York
.
6.
Badgley
,
R. H.
, and
Hartman
,
R. H.
, 1974, “
Gearbox Noise Reduction: Prediction and Measurement of Mesh-Frequency Vibrations Within an Operating Helicopter Rotor-Drive Gearbox
,”
Trans. ASME J. Eng. Ind.
,
96
(
2
), pp.
567
577
.
7.
Cavdar
,
K.
,
Karpat
,
F.
, and
Babalik
,
F. C.
, 2005, “
Computer Aided Analysis of Bending Strength of Involute Spur Gears with Asymmetric Profile
,”
ASME J. Mech. Des.
1050-0472,
127
(
3
), pp.
477
484
.
8.
Wang
,
M.-J.
, 2003, “
A New Photoelastic Investigation of the Dynamic Bending Stress of Spur Gears
,”
ASME J. Mech. Des.
1050-0472,
125
(
2
), pp.
365
372
.
9.
Velex
,
P.
, and
Baud
,
S.
, 2002, “
Static and Dynamic Tooth Loading in Spur and Helical Geared Systems—Experiments and Model Validation
,”
ASME J. Mech. Des.
1050-0472,
124
(
2
), pp.
334
346
.
10.
Winter
,
H.
, and
Hirt
,
M.
, 1974, “
Zahnfußtragfähigkeit auf der Grundlage der Wirklichen Spannungen. Spannungskorrekturfaktor, Kerbempfindlichkeitszahl und Relativer Kerbfaktor in ISO-Ansatz
,”
VDI-Z
,
116
(
2
), pp.
119
126
.
11.
Linke
,
H.
, and
Sporbert
,
K.
, 1985, “
Einfluß des Schleifabsatzes auf die Spannungs-Konzentration bei Verzahnungen
,”
Maschinenbautechnik
,
34
(
4
), pp.
251
257
.
12.
Jaśkiewicz
,
Z.
, and
Wąsiewski
,
A.
, 1992,
Spur Gear Transmissions. Geometry, Strength, Accuracy of Manufacturing
(in Polish),
1
,
Transport and Communication
,
Warsaw
.
13.
Jaśkiewicz
,
Z.
, and
Wąsiewski
,
A.
, 1995,
Spur Gear Transmissions. Design
(in Polish),
2
,
Transport and Communication
,
Warsaw
.
14.
Litvin
,
F. L.
,
Egelja
,
A.
,
Tan
,
J.
, and
Heath
,
G.
, 1998, “
Computerized Design, Generation and Simulation of Meshing of Orthogonal Offset Face-Gear Drive With a Spur Involute Pinion With Localized Bearing Contact
,”
Mech. Mach. Theory
0094-114X,
33
(
1/2
), pp.
87
102
.
15.
Pedrero
,
J. I.
,
Rueda
,
A.
, and
Fuentes
,
A.
, 1999, “
Determination of the ISO Tooth Form Factor for Involute Spur and Helical Gears
,”
Mech. Mach. Theory
0094-114X,
34
(
1
), pp.
89
103
.
16.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice–Hall
,
Englewood Cliffs, NJ
.
17.
Kleiber
,
M.
, ed., 1998,
Handbook of Computational Solid Mechanics
,
Springer
,
Berlin
.
18.
Weck
,
M.
, 1992,
Moderne Leistungsgetriebe. Verzahnungsauslegung und Betriebsverhalten
,
Springer-Verlag
,
Berlin
.
19.
Guingand
,
M.
,
de Vaujany
,
J. P.
, and
Icard
,
Y.
, 2004, “
Fast Three-Dimensional Quasi-Static Analysis of Helical Gears Using the Finite Prism Method
,”
ASME J. Mech. Des.
1050-0472,
126
(
6
), pp.
1082
1088
.
20.
Sainsot
,
P.
, and
Velex
,
P.
, 2004, “
Contribution of Gear Body to Tooth Deflections—A New Bidimensional Analytical Formula
,”
ASME J. Mech. Des.
1050-0472,
126
(
4
), pp.
748
752
.
21.
Litvin
,
F. L.
,
Fuentes
,
A.
,
Zani
,
C.
,
Pontiggia
,
M.
, and
Handschuh
,
R. F.
, 2002, “
Face-Gear Drive With Spur Involute Pinion: Geometry, Generation by a Worm, Stress Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
(
25–26
), pp.
2785
2813
.
22.
Litvin
,
F. L.
,
Chen
,
J. S.
,
Lu
,
J.
,
Handschuh
,
R. F.
, 1996, “
Application of Finite Element Analysis for Determination of Load Share, Real Contact Ratio, Precision of Motion, and Stress Analysis
,”
ASME J. Mech. Des.
1050-0472,
118
(
4
), pp.
561
567
.
23.
Lewicki
,
D. G.
,
Handschuh
,
R. F.
,
Spievak
,
L. E.
,
Wawrzynek
,
P. A.
, and
Ingraffea
,
A. R.
, 2001, “
Consideration of Moving Tooth Load in Gear Crack Propagation Predictions
,”
ASME J. Mech. Des.
1050-0472,
123
(
1
), pp.
118
124
.
24.
Handschuh
,
R. F.
, and
Bibel
,
G. D.
, 1999, “
Experimental and Analytical Study of Aerospace Spiral Bevel Gear Tooth Fillet Stresses
,”
ASME J. Mech. Des.
1050-0472,
121
(
4
), pp.
565
572
.
25.
Barkah
,
D.
,
Shafiq
,
B.
, and
Dooner
,
D.
, 2002, “
3D Mesh Generation for Static Stress Determination in Spiral Noncircular Gears Used for Torque Balancing
,”
ASME J. Mech. Des.
1050-0472,
124
(
2
), pp.
313
319
.
26.
Liu
,
L.
, and
Pines
,
D. J.
, 2002, “
The Influence of Gear Design Parameters on Gear Tooth Damage Detection Sensitivity
,”
ASME J. Mech. Des.
1050-0472,
124
(
4
), pp.
794
804
.
27.
ISO 6336 Standard, Calculation of Load Capacity of Spur and Helical Gears.
28.
DIN 3990, Tragfähigkeitsberechnung von Stirnrädern, Dezember 1987.
29.
AGMA 908-B89, April 1989, Geometry Factors for Determining the Pitting Resistance and Bending Strength of Spur, Helical and Herringbone Gear Teeth.
30.
AGMA 918-A93. AGMA Information Sheet, January 1993, A Summary of Numerical Examples Demonstrating the Procedures for Calculating Geometry Factors for Spur and Helical Gears.
31.
ANSI/AGMA 6002-B93, February 1993, Design Guide for Vehicle Spur and Helical Gears.
32.
ANSI/AGMA 2001-C95, January 1995, Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth.
33.
ANSI/AGMA 2101-C95, January 1995, Metric Edition of ANSI/AGMA 2001-C95. Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth.
34.
ANSI/AGMA 6110-F97, September 1997, Standard for Spur, Helical, Herringbone and Bevel Enclosed Drives. Annex C, Illustrative examples.
35.
AGMA Information Sheet 913-A98, Method for Specifying the Geometry of Spur and Helical Gears.
36.
Hösel
,
T.
, 1988, “
Einfluß der Zahnform auf die Flanken—und Zahnfuβtragfähigkeit nach DIN 3990 und AGMA 218.01—Grenzen für Optimierungsrechnungen
,”
Antriebstechnik
,
27
(
9
), pp.
65
68
.
37.
Hösel
,
T.
, 1989, “
Vergleich der Tragfähigkeitsberechnung für Stirnräder nach ANSI/AGMA—ISO/DIN—und RGW-Normen
,”
Antriebstechnik
,
28
(
11
), pp.
77
84
.
38.
Niemann
,
G.
, and
Winter
,
H.
, 1985,
Maschinenelemente, Band II
,
Springer-Verlag
,
Berlin
.
39.
Lewicki
,
D. G.
, and
Ballarini
,
R.
, 1997, “
Gear Crack Propagation Investigations
,”
Gear Technol.
0743-6858,
14
(
6
), pp.
18
24
.
40.
Kawalec
,
A.
, and
Wiktor
,
J.
, 1999, “
Analytical and Numerical Method of Determination of Spur Gear Tooth Profile Machined by Gear Tools
,”
Adv. Technol. Mach. Equipment
,
23
(
2
), pp.
5
28
.
41.
Math
,
V. B.
, and
Chand
,
S.
, 2004, “
An Approach to the Determination of Spur Gear Tooth Root Fillet
,”
ASME J. Mech. Des.
1050-0472,
126
(
2
), pp.
336
340
.
42.
ADINA Theory and Modeling Guide
,
ADINA R & D, Inc.
,
Watertown, MA
, 2000.
43.
Kawalec
,
A.
, 1997, “
Modelling of Tooth Flanks Based on Distorted Measurements
,”
Adv. Technol. Mach. Mech. Equipment
,
21
(
3
), pp.
5
28
.
44.
Kawalec
,
A.
, and
Wiktor
,
J.
, 2001, “
Analysis of Strength of Tooth Root With Notch After Finishing of Involute Gears
,”
Arch. Mech. Eng.
,
48
(
3
), pp.
217
248
.
45.
Timoshenko
,
S. P.
, and
Goodyear
,
J. N.
, 1970,
Theory of Elasticity
,
McGraw–Hill
,
New York
.
46.
Kramberger
,
J.
,
Šraml
,
M.
,
Potrč
,
I.
, and
Flašker
,
J.
, 2004, “
Numerical Calculation of Bending Fatigue Life of Thin-Rim Spur Gears
,”
Eng. Fract. Mech.
0013-7944,
71
(
4–6
), pp.
647
656
.
47.
Li
,
S.
, 2002, “
Gear Contact Model and Loaded Tooth Contact Analysis of a Three-Dimensional Thin-Rimmed Gear
,”
ASME J. Mech. Des.
1050-0472,
124
(
3
), pp.
511
517
.
48.
Ceglarek
,
DS.
,
Shi
,
J.
, and
Wu
,
S. M.
, 1994, “
A Knowledge-based Diagnosis Approach for the Launch of the Auto-body Assembly Process
,”
ASME J. Eng. Ind.
0022-0817,
116
(
4
), pp.
491
499
.
49.
Rybak
,
J.
,
Kawalec
,
A.
, and
Wiktor
,
J.
, 1999, “
Analysis in Involute Cylindrical Gear Transmissions with Modified Tooth Trace
,”
Proceedings of the 4th World Congress on Gearing and Power Transmissions
, Paris, M.C.I.,
1
, pp.
169
181
.
You do not currently have access to this content.