Based on previously developed Mode Pursuing Sampling (MPS) approach for continuous variables, a variation of MPS for discrete variable global optimization problems on expensive black-box functions is developed in this paper. The proposed method, namely, the discrete variable MPS (D-MPS) method, differs from its continuous variable version not only on sampling in a discrete space, but moreover, on a novel double-sphere strategy. The double-sphere strategy features two hyperspheres whose radii are dynamically enlarged or shrunk in control of, respectively, the degree of “exploration” and “exploitation” in the search of the optimum. Through testing and application to design problems, the proposed D-MPS method demonstrates excellent efficiency and accuracy as compared to the best results in literature on the test problems. The proposed method is believed a promising global optimization strategy for expensive black-box functions with discrete variables. The double-sphere strategy provides an original search control mechanism and has potential to be used in other search algorithms.

1.
Khompatraporn
,
C.
,
Pinter
,
J. D.
, and
Zabinsky
,
Z. B.
, 2005, “
Comparative Assessment of Algorithms and Software for Global Optimization
,”
J. Global Optim.
0925-5001,
31
, pp.
613
633
.
2.
Lampinen
,
J.
, and
Zelinka
,
I.
, 1999, “
Mixed Integer-Discrete-Continuous Optimization By Differential Evolution, Part 2: A Practical Example
,”
Proceedings of MENDEL ’99, 5th International Mendel Conference on Soft Computing
,
Brno, Czech Republic
, Jun. 9–12.
3.
Bussieck
,
R.
,
Drud
,
S.
, and
Meeraus
,
A.
, 2003, “
MINLPLib-A Collection of Test Models for Mixed-Integer Nonlinear Programming
,”
INFORMS J. Comput.
1091-9856,
15
(
1
), pp.
114
119
.
4.
Huang
,
M.
, and
Arora
,
J. S.
, 1997, “
Optimal Design Discrete Variables: Some Numerical Experiments
,”
Int. J. Numer. Methods Eng.
0029-5981,
40
,
165
188
.
5.
Zabinsky
,
Z.
, 1998, “
Stochastic Methods for Practical Global Optimization
,”
J. Global Optim.
0925-5001,
13
,
433
444
.
6.
Horst
,
R.
, and
Pardalos
,
P. M.
, 1995,
Handbook of Global Optimization
,
Kluwer Academic
,
Dordrecht
.
7.
Wang
,
G. G.
, and
Shan
,
S.
, 2007, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
129
(
4
), pp.
370
380
.
8.
Arora
,
J. S.
, 1989,
Introduction to Optimum Design
,
McGraw-Hill Higher Education
,
New York
.
9.
Gupta
,
O. K.
, and
Ravindran
,
A.
, 1985, “
Branch and Bound Experiments in Convex Nonlinear Integer Programming
,”
Manage. Sci.
0025-1909,
31
(
12
), pp.
1533
1546
.
10.
Fletcher
,
R.
, and
Leyffer
,
S.
, 1994, “
Solving Mixed Integer Programs by Outer Approximation
,”
Math. Program.
0025-5610,
66
,
327
349
.
11.
Branin
,
F. H.
, and
Hoo
,
S. K.
, 1972, “
A Method for Finding Multiple Extrema of a Function of N Variables
,”
Numerical Methods for Non-Linear Optimization
,
F.
Lootsma
,
Academic
,
New York
, pp.
231
237
.
12.
Reaume
,
J.
,
Romeijn
,
H.
, and
Smith
,
R.
, 2001, “
Implementing Pure Adaptive Search for Global Optimization Using Markov Chain Sampling
,”
J. Global Optim.
0925-5001,
20
, pp.
33
47
.
13.
Hedar
,
A.-R.
, and
Fukushima
,
M.
, 2004, “
Derivative-Free Filter Simulated Annealing Method for Constrained Continuous Global Optimization
,”
J. Global Optim.
0925-5001,
35
(
4
), pp.
521
549
.
14.
Lemonge
,
A. C. C.
, and
Barbosa
,
H. J. C.
, 2004, “
An Adaptive Penalty Scheme for Genetic Algorithms in Structural Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
59
, pp.
703
736
.
15.
Gu
,
L.
, 2001, “
A Comparison of Polynomial Based Regression Models in Vehicle Safety Analysis
,”
2001 ASME Design Engineering Technical Conferences—Design Automation Conference
,
A.
Diaz
, ed.,
ASME
,
Pittsburgh, PA
, Sept. 9–12, DAC–21063.
16.
Kiatsupailbul
,
S.
,
Smith
,
R. L.
, and
Zabinsky
,
Z. B.
, 2001,
Discrete Hit-and-Run Algorithm for Generating Samples from General Discrete Multivariate Distribution
, Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI.
17.
Jones
,
D. R.
,
Perttunen
,
C. D.
, and
Stuckman
,
B. E.
, 1993, “
Lipschitzian Optimization without the Lipschitz Constant
,,”
J. Optim. Theory Appl.
0022-3239,
79
, pp.
157
181
.
18.
Sergeyev
,
Y.
, and
Kvasov
,
D.
, 2006, “
Global Search Based on Efficient Diagonal Partitions and Set of Lipschiz Constants
,”
SIAM J. Optim.
1052-6234,
16
(
3
), pp.
910
937
.
19.
Zhang
,
L.
, and
Subbarayan
,
G.
, 2002, “
An Evaluation of Back Propagation Neural Networks for the Optimal Design of Structural Systems: Part I. Numerical Evaluation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
2887
2904
.
20.
Akbarzadeh
,
M. R.
, and
Khorsand
,
R.
, 2005, “
Evolutionary Quantum Algorithms for Structural Design
,”
Proceedings of IEEE International Conference on Systems, Men, and Cybernetics
, Oct. 10–12, pp.
3077
3082
.
21.
Wang
,
G. G.
, and
Simpson
,
T. W.
, 2004, “
Fuzzy Clustering Based Hierarchical Metamodeling for Space Reduction and Design Optimization
,”
Eng. Optimiz.
0305-215X,
36
(
3
), pp.
313
335
.
22.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
, 1998, “
Efficient Global Optimization of Expensive Black Box Functions
,”
J. Global Optim.
0925-5001,
13
, pp.
455
492
.
23.
Wang
,
L.
,
Shan
,
S.
, and
Wang
,
G. G.
, 2004, “
Mode-Pursuing Sampling Method for Global Optimization on Expensive Black-Box Functions
,”
Eng. Optimiz.
0305-215X,
36
(
4
), pp.
419
438
.
24.
Fu
,
J. C.
, and
Wang
,
L.
, 2002, “
A Random-Discretization Based Monte Carlo Sampling Method and Its Applications
,”
Methodol. Comput. Appl. Probab.
1387-5841,
4
, pp.
5
25
.
25.
Cao
,
Y. J.
, and
Wu
,
Q. H.
, 1997, “
Mechanical Design Optimization by Mixed-Variable Evolutionary Programming
,”
Proceedings of IEEE Conference on Evolutionary Computation
,
ICEC
,
Indianapolis, IN
, Apr. 13–16.
26.
Droste
,
S.
,
Jansen
,
T.
, and
Wegener
,
I.
, 2001,
A New Framework for the Valuation of Algorithms for Black-Box Optimization
, University of Dortmund, Dortmund, Germany, CI-118/01.
27.
Sandgren
,
E.
, 1990, “
Nonlinear Integer and Discrete Programming in Mechanical Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
112
, pp.
223
229
.
28.
Lin
,
Y. C.
,
Wang
,
F. S.
, and
Hwang
,
K.
, 1999, “
A Hybrid Method of Evolutionary Algorithms for Mixed-Integer Nonlinear Optimization Problems
,”
Proceedings of the 1999 Congress on Evolutionary Computation-CEC99
,
IEEE
,
Washington
, Jul. 6–9, Vol.
3
. Cat. No. 99TH8406.
29.
Fu
,
J. F.
,
Fenton
,
R. G.
, and
Cleghorn
,
W. L.
, 1991, “
A Mixed Integer Discrete-Continuous Programming Method and its Application to Engineering Design Optimization
,”
Eng. Optimiz.
0305-215X,
17
(
3
), pp.
263
280
.
30.
Zhang
,
C.
, and
Wang
,
H. P.
, 1993, “
Mixed-Discrete Nonlinear Optimization With Simulated Annealing
,”
Eng. Optimiz.
0305-215X,
21
(
44
), pp.
277
291
.
31.
Capriles
,
P. V. S. Z.
,
da Fonseca
,
L. G.
,
Barbosa
,
H. J. C.
, and
Lemonge
,
A. C. C.
, 2005, “
Ant Colony Algorithms Applied to Discrete Optimization Problems
,”
XXVIII Congress Nacional de Matemátical Aplicada e Computacional (CNMAC)
,
Sao Paulo
,
Brazil
, Sept. 12–15.
You do not currently have access to this content.