Kriging is a useful method for developing metamodels for product design optimization. The most popular kriging method, known as ordinary kriging, uses a constant mean in the model. In this article, a modified kriging method is proposed, which has an unknown mean model. Therefore, it is called blind kriging. The unknown mean model is identified from experimental data using a Bayesian variable selection technique. Many examples are presented, which show remarkable improvement in prediction using blind kriging over ordinary kriging. Moreover, a blind kriging predictor is easier to interpret and seems to be more robust against mis-specification in the correlation parameters.

1.
Fang
,
K. T.
,
Li
,
R.
, and
Sudjianto
,
A.
, 2006,
Design and Modeling for Computer Experiments
,
CRC
,
New York
.
2.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
0883-4237,
4
, pp.
409
423
.
3.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W. I.
, 2003,
The Design and Analysis of Computer Experiments
,
Springer
,
New York
.
4.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T.
, 2001, “
Comparative Studies of Metamodeling Techniques Under Multiple Modeling Criteria
,”
Struct. Multidiscip. Optim.
1615-147X,
23
, pp.
1
13
.
5.
Pacheco
,
J. E.
,
Amon
,
C. H.
, and
Finger
,
S.
, 2003, “
Bayesian Surrogates Applied to Conceptual Stages of the Engineering Design Process
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
664
672
.
6.
Cappelleri
,
D. J.
,
Frecker
,
M. I.
,
Simpson
,
T. W.
, and
Snyder
,
A.
, 2002, “
Design of a PZT Bimorph Actuator Using a Metamodel-Based Approach
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
354
357
.
7.
Sasena
,
M. J.
,
Parkinson
,
M.
,
Reed
,
M. P.
,
Paplambros
,
P. Y.
, and
Goovaerts
,
P.
, 2005, “
Improving an Ergonomics Testing Procedure Via Approximation-Based Adaptive Experimental Design
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
1006
1013
.
8.
Yang
,
R. J.
,
Wang
,
N.
,
Tho
,
C. H.
,
Bobineau
,
J. P.
, and
Wang
,
B. P.
, 2005, “
Metamodeling Development for Vehicle Frontal Impact Simulation
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
1014
1020
.
9.
Apley
,
D. W.
,
Lin
,
J. L.
, and
Chen
,
W.
, 2006, “
Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
945
958
.
10.
Martin
,
J. D.
, and
Simpson
,
T. W.
, 2006, “
A Methodology to Manage System-Level Uncertainty During Conceptual Design
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
959
968
.
11.
Wackernagel
,
H.
, 2002,
Multivariate Geostatistics
,
Springer
,
New York
.
12.
Currin
,
C.
,
Mitchell
,
T. J.
,
Morris
,
M. D.
, and
Ylvisaker
,
D.
, 1991, “
Bayesian Prediction of Deterministic Functions, With Applications to the Design and Analysis of Computer Experiments
,”
J. Am. Stat. Assoc.
0162-1459,
86
, pp.
953
963
.
13.
Welch
,
W. J.
,
Buck
,
R. J.
,
Sacks
,
J.
,
Wynn
,
H. P.
,
Mitchell
,
T. J.
, and
Morris
,
M. D.
, 1992, “
Screening, Predicting, and Computer Experiments
,”
Technometrics
0040-1706,
34
, pp.
15
25
.
14.
Martin
,
J. D.
, and
Simpson
,
T. W.
, 2005, “
On the Use of Kriging Models to Approximate Deterministic Computer Models
,”
AIAA J.
0001-1452,
43
, pp.
853
863
.
15.
Joseph
,
V. R.
, 2006, “
Limit Kriging
,”
Technometrics
0040-1706,
48
, pp.
458
466
.
16.
Miller
,
A.
, 2002,
Subset Selection in Regression
,
CRC
,
New York
.
17.
George
,
E. I.
, and
McCulloch
,
R. E.
, 1993, “
Variable Selection Via Gibbs Sampling
,”
J. Am. Stat. Assoc.
0162-1459,
88
, pp.
881
889
.
18.
Breiman
,
L.
, 1995, “
Better Subset Regression Using the Nonnegative Garrote
,”
Technometrics
0040-1706,
37
, pp.
373
384
.
19.
Tibshirani
,
R.
, 1996, “
Regression Shrinkage and Selection Via the Lasso
,”
J. R. Stat. Soc. Ser. B (Methodol.)
0035-9246,
58
, pp.
267
288
.
20.
Efron
,
B.
,
Johnstone
,
I.
,
Hastie
,
T.
, and
Tibshirani
,
R.
, 2004, “
Least Angle Regression
,”
Ann. Stat.
0090-5364,
32
, pp.
407
499
.
21.
Hamada
,
M.
, and
Wu
,
C. F. J.
, 1992, “
Analysis of Designed Experiments With Complex Aliasing
,”
J. Quality Technol.
0022-4065,
24
, pp.
130
137
.
22.
Chipman
,
H.
,
Hamada
,
M.
, and
Wu
,
C. F. J.
, 1997, “
A Bayesian Variable Selection Approach for Analyzing Designed Experiments With Complex Aliasing
,”
Technometrics
0040-1706,
39
, pp.
372
381
.
23.
Joseph
,
V. R.
, 2006, “
A Bayesian Approach to the Design and Analysis of Fractionated Experiments
,”
Technometrics
0040-1706,
48
, pp.
219
229
.
24.
Joseph
,
V. R.
, and
Delaney
,
J. D.
, 2007, “
Functionally Induced Priors for the Analysis of Experiments
,”
Technometrics
0040-1706,
49
, pp.
1
11
.
25.
Wu
,
C. F. J.
, and
Hamada
,
M.
, 2000,
Experiments: Planning, Analysis, and Parameter Design Optimization
,
Wiley
,
New York
.
26.
Chen
,
W.
,
Jin
,
R.
, and
Sudjianto
,
A.
, 2005, “
Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
875
886
.
27.
Hoffman
,
R. M.
,
Sudjianto
,
A.
,
Du
,
X.
, and
Stout
,
J.
, 2003, “
Robust Piston Design and Optimization Using Piston Secondary Motion Analysis
,” SAE Transactions, SAE Paper No. 2003-01-0148.
28.
Li
,
R.
, and
Sudjianto
,
A.
, 2005, “
Analysis of Computer Experiments Using Penalized Likelihood in Gaussian Kriging Models
,”
Technometrics
0040-1706,
47
, pp.
111
120
.
29.
Qian
,
Z.
,
Seepersad
,
C. C.
,
Joseph
,
V. R.
,
Allen
,
J. K.
, and
Wu
,
C. F. J.
, 2006, “
Building Surrogate Models Based on Detailed and Approximate Simulations
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
668
677
.
30.
Sacks
,
J.
,
Schiller
,
S. B.
, and
Welch
,
W. J.
, 1989, “
Design of Computer Experiments
,”
Technometrics
0040-1706,
31
, pp.
41
47
.
31.
Morris
,
M. D.
,
Mitchell
,
T. J.
, and
Ylvisaker
,
D.
, 1993, “
Bayesian Design and Analysis of Computer Experiments: Use of Derivatives in Surface Prediction
,”
Technometrics
0040-1706,
35
, pp.
243
255
.
You do not currently have access to this content.