This paper introduces a position-space-based reconfiguration (PSR) approach to the reconfiguration of compliant mechanisms. The PSR approach can be employed to reconstruct a compliant mechanism into many new compliant mechanisms, without affecting the mobility of the compliant mechanism. Such a compliant mechanism can be decomposed into rigid stages and compliant modules. Each of the compliant modules can be placed at any one permitted position within its position space, which does not change the constraint imposed by the compliant module on the compliant mechanism. Therefore, a compliant mechanism can be reconfigured through selecting different permitted positions of the associated compliant modules from their position spaces. The proposed PSR approach can be used to change the geometrical shape of a compliant mechanism for easy fabrication, or to improve its motion characteristics such as cross-axis coupling, lost motion, and motion range. While this paper focuses on reducing the parasitic motions of a compliant mechanism using this PSR approach, the associated procedure is summarized and demonstrated using a decoupled XYZ compliant parallel mechanism as an example. The parasitic motion of the XYZ compliant parallel mechanism is modeled analytically, with three variables which represent any permitted positions of the associated compliant modules in their position spaces. The optimal positions of the compliant modules in the XYZ compliant parallel mechanism are finally obtained based on the analytical results, where the parasitic motion is reduced by approximately 50%. The reduction of the parasitic motion is verified by finite-element analysis (FEA) results, which differ from the analytically obtained values by less than 7%.

References

1.
Jones
,
R. V.
,
1988
,
Instruments and Experiences. Papers on Measurement and Instrument Design
(Wiley Series in Measurement Science and Technology), Vol.
1
,
Wiley
,
Chichester, NY
.
2.
Erdman
,
A. G.
, and
Sandor
,
G. N.
,
1997
,
Mechanism Design: Analysis and Synthesis
, 3rd ed., Vol.
1
,
Prentice-Hall
, Upper Saddle River, NJ.
3.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
Hoboken, NJ
.
4.
Lobontiu
,
N.
,
2002
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
, Boca Raton, FL.
5.
Smith
,
S. T.
,
2003
,
Foundations of Ultra-Precision Mechanism Design
,
CRC Press
, Boca Raton, FL.
6.
Uicker
,
J. J.
,
Pennock
,
G. R.
, and
Shigley
,
J. E.
,
2011
,
Theory of Machines and Mechanisms
,
Oxford University Press
,
Oxford, UK
.
7.
Hao
,
G.
,
Kong
,
X.
, and
Reuben
,
R. L.
,
2011
, “
A Nonlinear Analysis of Spatial Compliant Parallel Modules: Multi-Beam Modules
,”
Mech. Mach. Theory
,
46
(
5
), pp.
680
706
.
8.
Awtar
,
S.
,
Ustick
,
J.
, and
Sen
,
S.
,
2012
, “
An XYZ Parallel-Kinematic Flexure Mechanism With Geometrically Decoupled Degrees of Freedom
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
015001
.
9.
Hao
,
G.
,
2013
, “
Towards the Design of Monolithic Decoupled XYZ Compliant Parallel Mechanisms for Multi-Function Applications
,”
Mech. Sci.
,
4
(
2
), pp.
291
302
.
10.
Jones
,
R. V.
,
1962
, “
Some Uses of Elasticity in Instrument Design
,”
J. Sci. Instrum.
,
39
(
5
), pp.
193
203
.
11.
Smith
,
S. T.
,
2000
,
Flexures: Elements of Elastic Mechanisms
,
Gordon and Breach Science Publishers
,
New York
.
12.
Meng
,
Q.
,
Li
,
Y.
, and
Xu
,
J.
,
2014
, “
A Novel Analytical Model for Flexure-Based Proportion Compliant Mechanisms
,”
Precis. Eng.
,
38
(
3
), pp.
449
457
.
13.
Su
,
H.
, and
Yue
,
C.
,
2013
, “
Type Synthesis of Freedom and Constraint Elements for Design of Flexure Mechanisms
,”
Mech. Sci.
,
4
(
2
), pp.
263
277
.
14.
Kim
,
D.
,
Lee
,
D. Y.
, and
Gweon
,
D. G.
,
2007
, “
A New Nano-Accuracy AFM System for Minimizing Abbe Errors and the Evaluation of Its Measuring Uncertainty
,”
Ultramicroscopy
,
107
(
4–5
), pp.
322
328
.
15.
Schitter
,
G.
,
Thurner
,
P. J.
, and
Hansma
,
P. K.
,
2008
, “
Design and Input-Shaping Control of a Novel Scanner for High-Speed Atomic Force Microscopy
,”
Mechatronics
,
18
(5–6), pp.
282
288
.
16.
Gorman
,
J. J.
, and
Dagalakis
,
N. G.
,
2003
, “
Force Control of Linear Motor Stages for Microassembly
,”
ASME
Paper No. IMECE2003-42079, pp. 615–623.
17.
Hesselbach
,
J.
,
Raatz
,
A.
, and
Kunzmann
,
H.
,
2004
, “
Performance of Pseudo-Elastic Flexure Hinges in Parallel Robots for Micro-Assembly Tasks
,”
CIRP Ann.—Manuf. Technol.
,
53
(
1
), pp.
329
332
.
18.
Choi
,
K.-B.
,
Lee
,
J.
,
Kim
,
G.
, and
Lim
,
H.
,
2012
, “
A Compliant Parallel Mechanism With Flexure-Based Joint Chains for Two Translations
,”
Int. J. Precis. Eng. Manuf.
,
13
(
9
), pp.
1625
1632
.
19.
Kota
,
S.
,
Joo
,
J.
,
Li
,
Z.
,
Rodgers
,
S.
, and
Sniegowski
,
J.
,
2001
, “
Design of Compliant Mechanisms: Applications to MEMS
,”
Analog Integr. Circuits Signal Process.
,
29
(
1–2
), pp.
7
15
.
20.
Tolou
,
N.
,
Henneken
,
V. A.
, and
Herder
,
J. L.
,
2010
, “
Statically Balanced Compliant Micro Mechanisms (SB-MEMS): Concepts and Simulation
,”
ASME
Paper No. DETC2010-28406, pp. 447–454.
21.
Lobontiu
,
N.
, and
Garcia
,
E.
,
2005
,
Mechanics of Microelectromechanical Systems
,
Springer
, Heidelberg, Germany.
22.
Chen
,
G.
,
Aten
,
Q. T.
,
Zirbel
,
S.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2009
, “
A Tristable Mechanism Configuration Employing Orthogonal Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
014501
.
23.
Culpepper
,
M. L.
, and
Anderson
,
G.
,
2004
, “
Design of a Low-Cost Nano-Manipulator Which Utilizes a Monolithic, Spatial Compliant Mechanism
,”
Precis. Eng.
,
28
(
4
), pp.
469
482
.
24.
Awtar
,
S.
, and
Slocum
,
A. H.
,
2006
, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
816
830
.
25.
Hao
,
G.
,
Li
,
H.
, and
Kavanagh
,
R.
,
2015
, “
Design of Decoupled, Compact, and Monolithic Spatial Translational Compliant Parallel Manipulators Based on the Position Space
,”
Proc. Inst. Mech. Eng., Part C
,
230
, pp. 367–378.
26.
Zhao
,
H.
,
Bi
,
S.
, and
Yu
,
J.
,
2012
, “
A Novel Compliant Linear-Motion Mechanism Based on Parasitic Motion Compensation
,”
Mech. Mach. Theory
,
50
, pp.
15
28
.
27.
Jones
,
R. V.
, and
Young
,
I. R.
,
1956
, “
Some Parasitic Deflexions in Parallel Spring Movements
,”
J. Sci. Instrum.
,
33
(
1
), pp.
11
15
.
28.
Hao
,
G.
,
2014
, “
A 2-Legged XY Parallel Flexure Motion Stage With Minimised Parasitic Rotation
,”
Proc. Inst. Mech. Eng., Part C
,
228
, pp. 3156–3169.
29.
Hao
,
G.
,
Li
,
H.
,
He
,
X.
, and
Kong
,
X.
,
2014
, “
Conceptual Design of Compliant Translational Joints for High-Precision Applications
,”
Front. Mech. Eng.
,
9
(
4
), pp.
1
13
.
30.
Hao
,
G.
, and
Li
,
H.
,
2015
, “
Design of 3-Legged XYZ Compliant Parallel Manipulators With Minimised Parasitic Rotations
,”
Robotica
,
33
(4), pp. 787–806.
31.
Ni
,
Z.
,
Zhang
,
D.
,
Wu
,
Y.
,
Tian
,
Y.
, and
Hu
,
M.
,
2010
, “
Analysis of Parasitic Motion in Parallelogram Compliant Mechanism
,”
Precis. Eng.
,
34
(
1
), pp.
133
138
.
32.
Polit
,
S.
, and
Dong
,
J.
,
2009
, “
Design of High-Bandwidth High-Precision Flexure-Based Nanopositioning Modules
,”
J. Manuf. Syst.
,
28
(
2–3
), pp.
71
77
.
33.
Li
,
H.
, and
Hao
,
G.
,
2015
, “
A Constraint and Position Identification (CPI) Approach for the Synthesis of Decoupled Spatial Translational Compliant Parallel Manipulators
,”
Mech. Mach. Theory
,
90
, pp.
59
83
.
34.
Li
,
H.
,
Hao
,
G.
, and
Kavanagh
,
R.
,
2014
, “
Synthesis of Decoupled Spatial Translational Compliant Parallel Mechanisms Via Freedom and Actuation Method (FAM)
,”
ASME
Paper No. ESDA2014-20196, p. V003T17A004.
35.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)-Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.
36.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)-Part II: Practice
,”
Precis. Eng.
,
34
(
2
), pp.
271
278
.
37.
Hopkins
,
J. B.
,
2007
, “
Design of Parallel Flexure Systems Via Freedom and Constraint Topologies (FACT)
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
38.
Hopkins
,
J. B.
,
2013
, “
Designing Hybrid Flexure Systems and Elements Using Freedom and Constraint Topologies
,”
Mech. Sci.
,
4
(
2
), pp.
319
331
.
39.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2011
, “
Synthesis of Precision Serial Flexure Systems Using Freedom and Constraint Topologies (FACT)
,”
Precis. Eng.
,
35
(
4
), pp.
638
649
.
40.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2007
,
Type Synthesis of Parallel Mechanisms
,
Springer-Verlag
,
Berlin, Germany
.
41.
Su
,
H.
,
2011
, “
Mobility Analysis of Flexure Mechanisms Via Screw Algebra
,”
ASME J. Mech. Rob.
,
3
(
4
), p.
041010
.
42.
Dai
,
J. S.
,
Zoppi
,
M.
, and
Kong
,
X.
,
2012
,
Advances in Reconfigurable Mechanisms and Robots I
,
Springer
, Heidelberg, Germany.
43.
Su
,
H.
,
Dorozhkin
,
D. V.
, and
Vance
,
J. M.
,
2009
, “
A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041009
.
44.
Li
,
H.
, and
Hao
,
G.
,
2015
, “
Constraint-Force-Based (CFB) Modeling of Compliant Mechanisms
,”
ASME
Paper No. DETC2015-46481, p. V05AT08A006.
45.
Hao
,
G.
,
Kong
,
X.
,
Chang
,
W.
, and
Luo
,
X.
,
2015
, “
Design of Compliant Parallel Grippers Using the Position Space Concept for Manipulating Sub-Millimeter Objects
,”
2015 IEEE International Conference on Automation and Computing (ICAC 2015)
, Glasgow, UK.
You do not currently have access to this content.