This paper presents a method for design optimization of brass wind instruments. The shape of a trumpet's bore is optimized to improve intonation using a physics-based sound simulation model. This physics-based model consists of an acoustic model of the resonator, a mechanical model of the excitator, and a model of the coupling between the excitator and the resonator. The harmonic balance technique allows the computation of sounds in a permanent regime, representative of the shape of the resonator according to control parameters of the virtual musician. An optimization problem is formulated in which the objective function to be minimized is the overall quality of the intonation of the different notes played by the instrument. The design variables are the physical dimensions of the resonator. Given the computationally expensive function evaluation and the unavailability of gradients, a surrogate-assisted optimization framework is implemented using the mesh adaptive direct search algorithm (MADS). Surrogate models are used both to obtain promising candidates in the search step of MADS and to rank-order additional candidates generated by the poll step of MADS. The physics-based model is then used to determine the next design iterate. Two examples (with two and five design optimization variables) demonstrate the approach. Results show that significant improvement of intonation can be achieved at reasonable computational cost. Finally, the perspectives of this approach for computer-aided instrument design are evoked, considering optimization algorithm improvements and problem formulation modifications using for instance different design variables, multiple objectives and constraints or objective functions based on the instrument's timbre.
Skip Nav Destination
Article navigation
April 2017
Research-Article
Brass Instruments Design Using Physics-Based Sound Simulation Models and Surrogate-Assisted Derivative-Free Optimization
Robin Tournemenne,
Robin Tournemenne
Institut de Recherche en Communications
et Cybernétique de Nantes,
UMR CNRS 6597,
École Centrale Nantes,
1 rue de la Noë,
Nantes 44300, France
e-mail: robin.tournemenne@irccyn.ec-nantes.fr
et Cybernétique de Nantes,
UMR CNRS 6597,
École Centrale Nantes,
1 rue de la Noë,
Nantes 44300, France
e-mail: robin.tournemenne@irccyn.ec-nantes.fr
Search for other works by this author on:
Jean-François Petiot,
Jean-François Petiot
Institut de Recherche en Communications et
Cybernétique de Nantes,
UMR CNRS 6597,
École Centrale Nantes,
1 rue de la Noë,
Nantes 44300, France
e-mail: jean-francois.petiot@irccyn.ec-nantes.fr
Cybernétique de Nantes,
UMR CNRS 6597,
École Centrale Nantes,
1 rue de la Noë,
Nantes 44300, France
e-mail: jean-francois.petiot@irccyn.ec-nantes.fr
Search for other works by this author on:
Bastien Talgorn,
Bastien Talgorn
Department of Mechanical Engineering,
GERAD and McGill University,
Montréal, QC H3T1J4, Canada
e-mail: bastien.talgorn@mail.mcgill.ca
GERAD and McGill University,
Montréal, QC H3T1J4, Canada
e-mail: bastien.talgorn@mail.mcgill.ca
Search for other works by this author on:
Michael Kokkolaras,
Michael Kokkolaras
Department of Mechanical Engineering,
GERAD and McGill University,
Montréal, QC H3T1J4, Canada
e-mail: michael.kokkolaras@mcgill.ca
GERAD and McGill University,
Montréal, QC H3T1J4, Canada
e-mail: michael.kokkolaras@mcgill.ca
Search for other works by this author on:
Joël Gilbert
Joël Gilbert
Laboratoire d'Acoustique
de l'Université du Maine,
UMR CNRS 6613,
Université du Maine,
Le Mans 72085, France
e-mail: joel.gilbert@univ-lemans.fr
de l'Université du Maine,
UMR CNRS 6613,
Université du Maine,
Le Mans 72085, France
e-mail: joel.gilbert@univ-lemans.fr
Search for other works by this author on:
Robin Tournemenne
Institut de Recherche en Communications
et Cybernétique de Nantes,
UMR CNRS 6597,
École Centrale Nantes,
1 rue de la Noë,
Nantes 44300, France
e-mail: robin.tournemenne@irccyn.ec-nantes.fr
et Cybernétique de Nantes,
UMR CNRS 6597,
École Centrale Nantes,
1 rue de la Noë,
Nantes 44300, France
e-mail: robin.tournemenne@irccyn.ec-nantes.fr
Jean-François Petiot
Institut de Recherche en Communications et
Cybernétique de Nantes,
UMR CNRS 6597,
École Centrale Nantes,
1 rue de la Noë,
Nantes 44300, France
e-mail: jean-francois.petiot@irccyn.ec-nantes.fr
Cybernétique de Nantes,
UMR CNRS 6597,
École Centrale Nantes,
1 rue de la Noë,
Nantes 44300, France
e-mail: jean-francois.petiot@irccyn.ec-nantes.fr
Bastien Talgorn
Department of Mechanical Engineering,
GERAD and McGill University,
Montréal, QC H3T1J4, Canada
e-mail: bastien.talgorn@mail.mcgill.ca
GERAD and McGill University,
Montréal, QC H3T1J4, Canada
e-mail: bastien.talgorn@mail.mcgill.ca
Michael Kokkolaras
Department of Mechanical Engineering,
GERAD and McGill University,
Montréal, QC H3T1J4, Canada
e-mail: michael.kokkolaras@mcgill.ca
GERAD and McGill University,
Montréal, QC H3T1J4, Canada
e-mail: michael.kokkolaras@mcgill.ca
Joël Gilbert
Laboratoire d'Acoustique
de l'Université du Maine,
UMR CNRS 6613,
Université du Maine,
Le Mans 72085, France
e-mail: joel.gilbert@univ-lemans.fr
de l'Université du Maine,
UMR CNRS 6613,
Université du Maine,
Le Mans 72085, France
e-mail: joel.gilbert@univ-lemans.fr
Contributed by the Design Automation Committee of ASME for publication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received July 4, 2016; final manuscript received December 13, 2016; published online January 31, 2017. Assoc. Editor: Gary Wang.
J. Mech. Des. Apr 2017, 139(4): 041401 (9 pages)
Published Online: January 31, 2017
Article history
Received:
July 4, 2016
Revised:
December 13, 2016
Citation
Tournemenne, R., Petiot, J., Talgorn, B., Kokkolaras, M., and Gilbert, J. (January 31, 2017). "Brass Instruments Design Using Physics-Based Sound Simulation Models and Surrogate-Assisted Derivative-Free Optimization." ASME. J. Mech. Des. April 2017; 139(4): 041401. https://doi.org/10.1115/1.4035503
Download citation file:
Get Email Alerts
Related Articles
Three-Dimensional Multi-Morphology TPMS-based Microchannel Design Method for Conformal Cooling in Injection Molding
J. Mech. Des (January,0001)
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
J. Mech. Des (November,2015)
Computational Simulations of Vertebral Body for Optimal Instrumentation Design
J. Med. Devices (June,2012)
DeepJEB: 3D Deep Learning-Based Synthetic Jet Engine Bracket Dataset
J. Mech. Des (April,2025)
Related Proceedings Papers
Related Chapters
Advances in the Stochastic Modeling of Constitutive Laws at Small and Finite Strains
Advances in Computers and Information in Engineering Research, Volume 2
Research and Implementation on Test and Diagnose Program by ATML
International Conference on Information Technology and Computer Science, 3rd (ITCS 2011)
CAD/CAE Simulation Optimization
Taguchi Methods: Benefits, Impacts, Mathematics, Statistics and Applications