The moving morphable component (MMC)-based method is a newly developed approach for topology optimization. In the MMC-based method, the design problem is formulated using a set of morphable components, and the optimized structural topologies are obtained by optimizing shapes, sizes, and locations of these components. However, the optimization process often tends to break the connection between the load area and the supported boundary. This disconnection has a strong influence on the convergence, especially when the large deformation effects are considered. In this paper, a method is developed for topology optimization of geometrically nonlinear structures by using the MMC-based method. A scheme is developed to address the disconnection issue in the optimization process. Several numerical examples are used to demonstrate the validity of the proposed method.

References

1.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods and Applications
,
Springer
,
Berlin
.
2.
Sato
,
Y.
,
Yaji
,
K.
,
Izui
,
K.
,
Yamada
,
T.
, and
Nishiwaki
,
S.
,
2018
, “
An Optimum Design Method for a Thermal-Fluid Device Incorporating Multiobjective Topology Optimization With an Adaptive Weighting Scheme
,”
ASME J. Mech. Des.
,
140
(
3
), p. 031402.
3.
Koh
,
S.
, and
Guest
,
J. K.
,
2017
, “
Topology Optimization of Components With Embedded Objects Using Discrete Object Projection
,”
ASME
Paper No. DETC2017-68055.
4.
Jin
,
M.
,
Zhang
,
X.
,
Yang
,
Z.
, and
Zhu
,
B.
,
2017
, “
Jacobian-Based Topology Optimization Method Using an Improved Stiffness Evaluation
,”
ASME J. Mech. Des.
,
140
(
1
), p. 011402.
5.
Zhu
,
B.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2014
, “
Level Set-Based Topology Optimization of Hinge-Free Compliant Mechanisms Using a Two-Step Elastic Modeling Method
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031007
.
6.
Zhu
,
B.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2014
, “
A Velocity Predictor-Corrector Scheme in Level Set-Based Topology Optimization to Improve Computational Efficiency
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091001
.
7.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
8.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9–10
), pp.
635
654
.
9.
Rozvany
,
G. I. N.
,
Zhou
,
M.
, and
Birker
,
T.
,
1992
, “
Generalized Shape Optimization Without Homogenization
,”
Struct. Optim.
,
4
(
3–4
), pp.
250
252
.
10.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.
11.
Querin
,
O. M.
,
Steven
,
G. P.
, and
Xie
,
Y. M.
,
1998
, “
Evolutionary Structural Optimisation (Eso) Using a Bidirectional Algorithm
,”
Eng. Comput.
,
15
(
8
), pp.
1031
1048
.
12.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1997
,
Evolutionary Structural Optimization
,
Springer
,
Berlin
.
13.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
14.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A. M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
15.
Guo
,
X.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically: A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
16.
Norato
,
J. A.
,
Bell
,
B. K.
, and
Tortorelli
,
D. A.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
306
327
.
17.
Zhang
,
S.
,
Gain
,
A. L.
, and
Norato
,
J. A.
,
2017
, “
Stress-Based Topology Optimization With Discrete Geometric Components
,”
Comput. Methods Appl. Mech. Eng.
,
325
(7), pp. 1–21.
18.
Zhu
,
B.
,
Zhang
,
X.
,
Zhang
,
Y.
, and
Fatikow
,
S.
,
2017
, “
Design of Diaphragm Structure for Piezoresistive Pressure Sensor Using Topology Optimization
,”
Struct. Multidiscip. Optim.
,
55
(
1
), pp.
317
329
.
19.
Otomori
,
M.
,
Yamada
,
T.
,
Izui
,
K.
,
Nishiwaki
,
S.
, and
Andkjær
,
J.
,
2017
, “
Topology Optimization of Hyperbolic Metamaterials for an Optical Hyperlens
,”
Struct. Multidiscip. Optim.
,
55
(
3
), pp.
1
11
.
20.
Orme
,
M.
,
Gschweitl
,
M.
,
Ferrari
,
M.
,
Madera
,
I.
, and
Mouriaux
,
F.
,
2017
, “
Designing for Additive Manufacturing: Lightweighting Through Topology Optimization Enables Lunar Spacecraft
,”
ASME J. Mech. Des.
,
139
(
10
), p. 100905.
21.
Rozvany
,
G. I. N.
,
2009
, “
A Critical Review of Established Methods of Structural Topology Optimization
,”
Struct. Multidiscip. Optim.
,
37
(
3
), pp.
217
237
.
22.
van Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
van Keulen
,
F.
,
2013
, “
Level Set Methods for Structural Topology Optimization: A Review
,”
Struct. Multidiscip. Optim.
,
48
(
3
), pp.
437
472
.
23.
Sethian
,
J. A.
, and
Wiegmann
,
A.
,
2000
, “
Structural Boundary Design Via Level Set and Immersed Interface Methods
,”
J. Comput. Phys.
,
163
(
2
), pp.
489
528
.
24.
Ghasemi
,
H.
,
Park
,
H. S.
, and
Rabczuk
,
T.
,
2017
, “
A Level-Set Based Iga Formulation for Topology Optimization of Flexoelectric Materials
,”
Comput. Methods Appl. Mech. Eng.
,
313
, pp.
239
258
.
25.
Behrou
,
R.
,
Lawry
,
M.
, and
Maute
,
K.
,
2017
, “
Level Set Topology Optimization of Structural Problems With Interface Cohesion
,”
Int. J. Numer. Methods Eng.
,
112
(8), pp. 990–1016.
26.
Deng
,
X.
,
Wang
,
Y.
,
Yan
,
J.
,
Tao
,
L.
, and
Wang
,
S.
,
2016
, “
Topology Optimization of Total Femur Structure: Application of Parameterized Level Set Method Under Geometric Constraints
,”
ASME J. Mech. Des.
,
138
(
1
), p. 011402.
27.
Zhang
,
W.
,
Zhou
,
J.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2017
, “
Structural Complexity Control in Topology Optimization Via Moving Morphable Component (Mmc) Approach
,”
Struct. Multidiscip. Optim.
,
56
(3), pp. 535–552.
28.
Guo
,
X.
,
Zhang
,
W.
,
Zhang
,
J.
, and
Yuan
,
J.
,
2016
, “
Explicit Structural Topology Optimization Based on Moving Morphable Components (Mmc) With Curved Skeletons
,”
Comput. Methods Appl. Mech. Eng.
,
310
, pp.
711
748
.
29.
Zhang
,
W.
,
Li
,
D.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
Minimum Length Scale Control in Structural Topology Optimization Based on the Moving Morphable Components (MMC) Approach
,”
Comput. Methods Appl. Mech. Eng.
,
311
, pp.
327
355
.
30.
Takalloozadeh
,
M.
, and
Yoon
,
G. H.
,
2017
, “
Implementation of Topological Derivative in the Moving Morphable Components Approach
,”
Finite Elem. Anal. Des.
,
134
, pp.
16
26
.
31.
Xue
,
R.
,
Li
,
R.
,
Du
,
Z.
,
Zhang
,
W.
,
Zhu
,
Y.
,
Sun
,
Z.
, and
Guo
,
X.
,
2017
, “
Kirigami Pattern Design of Mechanically Driven Formation of Complex 3d Structures Through Topology Optimization
,”
Extreme Mech. Lett.
,
15
, pp.
139
144
.
32.
Buhl
,
T.
,
Pedersen
,
C. B. W.
, and
Sigmund
,
O.
,
2000
, “
Stiffness Design of Geometrically Nonlinear Structures Using Topology Optimization
,”
Struct. Multidisicip. Optim.
,
19
(
2
), pp.
93
104
.
33.
Gea
,
H. C.
, and
Luo
,
J.
,
2001
, “
Topology Optimization of Structures With Geometrical Nonlinearities
,”
Comput. Struct.
,
79
(
20–21
), pp.
1977
1985
.
34.
He
,
Q.
,
Kang
,
Z.
, and
Wang
,
Y.
,
2014
, “
A Topology Optimization Method for Geometrically Nonlinear Structures With Meshless Analysis and Independent Density Field Interpolation
,”
Comput. Mech.
,
54
(
3
), pp.
629
644
.
35.
Luo
,
Y.
,
Wang
,
M. Y.
, and
Kang
,
Z.
,
2015
, “
Topology Optimization of Geometrically Nonlinear Structures Based on an Additive Hyperelasticity Technique
,”
Comput. Methods Appl. Mech. Eng.
,
286
, pp.
422
441
.
36.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
,
2010
, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
50
(
12
), pp.
2683
2705
.
37.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
,
2001
, “
Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
26–27
), pp.
3443
3459
.
38.
Wang
,
F.
,
Lazarov
,
B. S.
,
Sigmund
,
O.
, and
Jensen
,
J. S.
,
2014
, “
Interpolation Scheme for Fictitious Domain Techniques and Topology Optimization of Finite Strain Elastic Problems
,”
Comput. Methods Appl. Mech. Eng.
,
276
(
7
), pp.
453
472
.
39.
Lee
,
H. A.
, and
Park
,
G. J.
,
2012
, “
Topology Optimization for Structures With Nonlinear Behavior Using the Equivalent Static Loads Method
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031004
.
40.
Jansen
,
M.
,
Lombaert
,
G.
, and
Schevenels
,
M.
,
2015
, “
Robust Topology Optimization of Structures With Imperfect Geometry Based on Geometric Nonlinear Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
285
, pp.
452
467
.
41.
Li
,
Z.
,
Zhang
,
X.
,
Chen
,
J.
,
Bian
,
H.
, and
Shi
,
L.
,
2011
, “
Multiobjective Topology Optimization of Compliant Mechanisms With Geometrical Nonlinearity
,”
J. Mech. Strength
,
33
(
4
), pp.
548
553
(in Chinese).
42.
Zhang
,
W.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
A New Topology Optimization Approach Based on Moving Morphable Components (Mmc) and the Ersatz Material Model
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1243
1260
.
43.
Jung
,
D.
, and
Gea
,
H. C.
,
2004
, “
Topology Optimization of Nonlinear Structures
,”
Finite Elem. Anal. Des.
,
40
(
11
), pp.
1417
1427
.
44.
Yoon
,
G. H.
, and
Kim
,
Y. Y.
,
2005
, “
Element Connectivity Parameterization for Topology Optimization of Geometrically Nonlinear Structures
,”
Int. J. Solids Struct.
,
42
(
7
), pp.
1983
2009
.
45.
Crisfield, M. A., Remmers, J. J. C., and Verhoosel, C. V., 2012, “
Nonlinear Finite Element Analysis of Solids and Structures
,”
Wiley Series in Computational Mechanics
, John Wiley & Sons, London.
46.
Chen
,
S.
,
Wang
,
M. Y.
,
Wang
,
S.
, and
Xia
,
Q.
,
2005
, “
Optimal Synthesis of Compliant Mechanisms Using a Connectivity Preserving Level Set Method
,”
ASME
Paper No. DETC2005-84748.
47.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes-a New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
48.
Zhang
,
W.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
Lagrangian Description Based Topology Optimization-a Revival of Shape Optimization
,”
ASME J. Appl. Mech.
,
83
(
4
), p.
041010
.
You do not currently have access to this content.