Fault adaptive design seeks to find the principles and properties that enable robustness, reliability, and resilience to implement those features into engineering products. In nature, this characteristic of adaptability is the fundamental trait that enables survival. Utilizing adaption strategy is a new area of research exploration for bio-inspired design (BID). In this paper, we introduce a tool for BID for fault adaption. Further, we discuss insights from using this tool in an undergraduate design experiment. The goal of the tool is to assist designers to develop fault adaptive behaviors in engineering systems using nature as inspiration. This tool is organized as a binary tree where branches that represent the specific details of how an organism achieves an adaptive behavior or characteristic. Results from an initial study indicate, for the specific challenge of designing fault adaption into a system, a strategy-based method can provide designers with innovative analogies and help provide the details needed to bridge the gap between analogy and engineering implementation.

References

1.
Gu
,
P.
,
Xue
,
D.
, and
Nee
,
A.
,
2009
, “
Adaptable Design: Concepts, Methods, and Applications
,”
Proc. Inst. Mech. Eng., Part B
,
223
(
11
), pp.
1367
1387
.
2.
Goel
,
A. K.
,
McAdams
,
D. A.
, and
Stone
,
R. B.
,
2015
,
Biologically Inspired Design
,
Springer-Verlag
, London.
3.
Shu
,
L.
,
Ueda
,
K.
,
Chiu
,
I.
, and
Cheong
,
H.
,
2011
, “
Biologically Inspired Design
,”
CIRP Ann.-Manuf. Technol.
,
60
(
2
), pp.
673
693
.
4.
Vandevenne
,
D.
,
Verhaegen
,
P.-A.
,
Dewulf
,
S.
, and
Duflou
,
J. R.
,
2011
, “
A Scalable Approach for the Integration of Large Knowledge Repositories in the Biologically-Inspired Design Process
,”
In DS 68-6: 18th International Conference on Engineering Design
(
ICED 11
), Impacting Society Through Engineering Design, Vol. 6: Design Information and Knowledge, Lyngby, Denmark, Aug. 15–19, pp.
210
219
.https://www.designsociety.org/publication/30628/A+SCALABLE+APPROACH+FOR+THE+INTEGRATION+OF+LARGE+KNOWLEDGE+REPOSITORIES+IN+THE+BIOLOGICALLY-INSPIRED+DESIGN+PROCESS
5.
Vattam
,
S. S.
,
Helms
,
M. E.
, and
Goel
,
A. K.
,
2010
, “
A Content Account of Creative Analogies in Biologically Inspired Design
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
24
(
4
), pp.
467
481
.
6.
Spenko
,
M.
,
Haynes
,
G. C.
,
Saunders
,
J.
,
Cutkosky
,
M. R.
,
Rizzi
,
A. A.
,
Full
,
R. J.
, and
Koditschek
,
D. E.
,
2008
, “
Biologically Inspired Climbing With a Hexapedal Robot
,”
J. Field Rob.
,
25
(
4–5
), pp.
223
242
.
7.
Hu
,
H.
,
2006
, “
Biologically Inspired Design of Autonomous Robotic Fish at Essex
,”
IEEE SMC UK-RI Chapter Conference on Advances in Cybernetic Systems
, Sheffield, UK, Sept. 7–8, pp.
1
8
.http://cswww.sx.ac.uk/staff/hhu/Papers/AICS2006-InvitedTalk-Hu.pdf
8.
Madangopal
,
R.
,
Khan
,
Z. A.
, and
Agrawal
,
S. K.
,
2005
, “
Biologically Inspired Design of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms and Quasi-Steady Aerodynamics
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
809
816
.
9.
Wang
,
M.
, and
Suda
,
T.
,
2001
, “
The Bio-Networking Architecture: A Biologically Inspired Approach to the Design of Scalable, Adaptive, and Survivable/Available Network Applications
,”
IEEE Symposium on Applications and the Internet
, San Diego, CA, Jan. 8–12, pp.
43
53
.
10.
Malshe
,
A.
,
Rajurkar
,
K.
,
Samant
,
A.
,
Hansen
,
H. N.
,
Bapat
,
S.
, and
Jiang
,
W.
,
2013
, “
Bio-Inspired Functional Surfaces for Advanced Applications
,”
CIRP Ann.-Manuf. Technol.
,
62
(
2
), pp.
607
628
.
11.
Tsenn
,
J.
,
Linsey
,
J. S.
, and
McAdams
,
D. A.
,
2016
, “
Bioinspired Materials Design: An Assessment of Methods to Improve a Text Mining Algorithm for Identifying Biological Material Structural Design Principles
,”
ASME
Paper No. DETC2016-59144.
12.
Helms
,
M.
, and
Goel
,
A. K.
,
2014
, “
The Four-Box Method: Problem Formulation and Analogy Evaluation in Biologically Inspired Design
,”
ASME J. Mech. Des.
,
136
(
11
), p.
111106
.
13.
Lenau
,
T. A.
,
Keshwani
,
S.
,
Chakrabarti
,
A.
, and
Ahmed-Kristensen
,
S.
,
2015
, “
Biocards and Level of Abstraction
,”
20th International Conference on Engineering Design
(
IECD
), Milan, Italy, July 27–30, pp. 177–186.https://www.researchgate.net/publication/281836686_Biocards_and_level_of_abstraction
14.
Azevedo
,
S. G.
,
Brandenburg
,
M.
,
Carvalho
,
H.
, and
Cruz-Machado
,
V.
,
2014
,
Eco-Innovation and the Development of Business Models: Lessons From Experience and New Frontiers in Theory and Practice
, Vol.
2
,
Springer
, Berlin.
15.
Deldin
,
J.-M.
, and
Schuknecht
,
M.
,
2014
, “
The Asknature Database: Enabling Solutions in Biomimetic Design
,”
Biologically Inspired Design
,
Springer
, Berlin, pp.
17
27
.
16.
Hu
,
T.
,
Yu
,
J.
, and
Wang
,
S.
,
2009
, “
Research on Complex System FMEA Method Based on Functional Modeling
,”
Eighth International Conference on Reliability, Maintainability and Safety
(
ICRMS
), Chengdu, China, July 20–24, pp.
63
66
.https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5235204
17.
Russomanno
,
D.
,
Bonnell
,
R.
, and
Bowles
,
J.
,
1993
, “
Functional Reasoning in a Failure Modes and Effects Analysis (FMEA) Expert System
,”
IEEE Reliability and Maintainability Symposium
, Atlanta, GA, Jan. 26–28, pp.
339
347
.
18.
Ericson
,
C.
,
2005
,
Hazard Analysis Techniques for System Safety
,
Wiley
, Hoboken, NJ.
19.
Pereira
,
S.
,
Lee
,
G.
, and
Howard
,
J.
,
2006
, “
A System-Theoretic Hazard Analysis Methodology for a Non-Advocate Safety Assessment of the Ballistic Missile Defense System
,” Missile Defense Agency, Washington, DC, Report No.
ADA466864
.http://www.dtic.mil/docs/citations/ADA466864
20.
Jensen
,
D. C.
,
Bello
,
O.
,
Hoyle
,
C.
, and
Tumer
,
I. Y.
,
2014
, “
Reasoning About System-Level Failure Behavior From Large Sets of Function-Based Simulations
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
28
(
4
), pp.
385
398
.
21.
Knight
,
J. C.
,
2002
, “
Safety Critical Systems: Challenges and Directions
,”
24th International Conference on Software Engineering
(
ICSC
), Orlando, FL, May 25, pp.
547
550
.https://ieeexplore.ieee.org/document/1007998/
22.
Ullman
,
D. G.
,
2003
,
The Mechanical Design Process
,
McGraw-Hill
, New York.
23.
Thompson
,
A.
,
1998
, “
On the Automatic Design of Robust Electronics Through Artificial Evolution
,”
International Conference on Evolvable Systems
(
ICES
), Lausanne, Switzerland, Sept. 23–25, pp.
13
24
.https://link.springer.com/chapter/10.1007/BFb0057603
24.
Ali
,
S.
,
Maciejewski
,
A. A.
,
Siegel
,
H. J.
, and
Kim
,
J.-K.
,
2003
, “
Definition of a Robustness Metric for Resource Allocation
,”
International Parallel and Distributed Processing Symposium
, Nice, France, Apr. 22–26, p.
10
.
25.
Carlson
,
J. M.
, and
Doyle
,
J.
,
2002
, “
Complexity and Robustness
,”
Proc. Natl. Acad. Sci.
,
99
(
Suppl. 1
), pp.
2538
2545
.
26.
Roy
,
R. K.
,
2010
,
A Primer on the Taguchi Method
, 2nd ed.,
Society of Manufacturing Engineers
, Dearborn, MI.
27.
Modarres
,
M.
,
Kaminskiy
,
M. P.
, and
Krivtsov
,
V.
,
2016
,
Reliability Engineering and Risk Analysis: A Practical Guide
, 3rd ed.,
CRC Press
, Boca Raton, FL.
28.
Samanta
,
B.
,
2009
, “
Engineering System Fault Detection Using Particle Filters
,”
ASME
Paper No. DETC2009-86809.
29.
Isermann
,
R.
,
1996
, “
Modeling and Design Methodology for Mechatronic Systems
,”
IEEE/ASME Trans. Mechatronics
,
1
(
1
), pp.
16
28
.
30.
Christopher
,
M.
, and
Rutherford
,
C.
,
2004
, “
Creating Supply Chain Resilience Through Agile Six Sigma
,”
Crit. Eye
,
7
(
1
), pp.
24
28
.http://valuenetworkmanagementforum.org/vnmf/images/past_events/competitive/publications/Creating_Supply_Chain_Resilience_Through_Agile_Six_Sigma.pdf
31.
Woods
,
D. D.
,
Leveson
,
N.
, and
Hollnagel
,
E.
,
2012
,
Resilience Engineering: Concepts and Precepts
,
Ashgate Publishing
, Aldershot, UK.
32.
Jones
,
G. A.
,
Layer
,
D. H.
, and
Osenkowsky
,
T. G.
,
2013
,
National Association of Broadcasters Engineering Handbook: NAB Engineering Handbook
, 10th ed.,
Taylor & Francis
, New York.
33.
Dhingra
,
A. K.
,
1992
, “
Optimal Apportionment of Reliability and Redundancy in Series Systems Under Multiple Objectives
,”
IEEE Trans. Reliability
,
41
(
4
), pp.
576
582
.
34.
Perrow
,
C.
,
1984
,
Normal Accidents: Living With High-Risk Technologies
,
Princeton University Press
, Princeton, NJ.
35.
Olewnik
,
A.
,
Brauen
,
T.
,
Ferguson
,
S.
, and
Lewis
,
K.
,
2004
, “
A Framework for Flexible Systems and Its Implementation in Multiattribute Decision Making
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
412
419
.
36.
Siddiqi
,
A.
,
de Weck
,
O. L.
, and
Iagnemma
,
K.
,
2006
, “
Reconfigurability in Planetary Surface Vehicles: Modeling Approaches and Case Study
,”
J. Br. Interplanet. Soc.
,
59
(12), pp. 450–460.
37.
Saleh
,
J. H.
,
Hastings
,
D. E.
, and
Newman
,
D. J.
,
2003
, “
Flexibility in System Design and Implications for Aerospace Systems
,”
Acta Astronaut.
,
53
(
12
), pp.
927
944
.
38.
Ferguson
,
S.
,
Siddiqi
,
A.
,
Lewis
,
K.
, and
de Weck
,
O. L.
,
2007
,“
Flexible and Reconfigurable Systems: Nomenclature and Review
,” ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (
IDETC/CIE
), Las Vegas, NV, Sept. 4–7, pp. 1–15.http://does.eng.buffalo.edu/administrator/components/com_jresearch/files/publications/DETC2007-35745.pdf
39.
Jalote
,
P.
, and
Jalote
,
P.
,
1994
,
Fault Tolerance in Distributed Systems
,
PTR Prentice Hall
,
Englewood Cliffs, NJ
.
40.
Misra
,
K. B.
,
2008
, “
Maintenance Engineering and Maintainability: An Introduction
,”
Handbook of Performability Engineering
,
Springer
, Berlin, pp.
755
772
.
41.
Johnson
,
S. B.
,
2015
, “
System Health Management
,”
Modeling and Simulation Support for System of Systems Engineering Applications
, Larry B. Rainey and Andreas Tolk, eds.,
Wiley
, Hoboken, NJ, pp.
131
143
.
42.
Dragomir
,
O. E.
,
Gouriveau
,
R.
,
Dragomir
,
F.
,
Minca
,
E.
, and
Zerhouni
,
N.
,
2009
, “
Review of Prognostic Problem in Condition-Based Maintenance
,”
European Control Conference
(
ECC
), Budapest, Hungary, Aug. 23–26, pp.
1587
1592
.
43.
Glier
,
M. W.
,
Tsenn
,
J.
,
Linsey
,
J. S.
, and
McAdams
,
D. A.
,
2011
, “
Methods for Supporting Bioinspired Design
,”
ASME
Paper No. IMECE2011-63247.
44.
Schuyler
,
J. R.
,
2001
,
Risk and Decision Analysis in Projects
, 2nd ed.,
Project Management Institute
, Newtown Square, PA.
45.
Bird
,
R.
, and
Wadler
,
P.
,
1988
,
Introduction to Functional Programming
, Vol.
1
,
Prentice Hall
,
Upper Saddle River, NJ
.
46.
Vincent
,
J. F.
,
Bogatyreva
,
O. A.
,
Bogatyrev
,
N. R.
,
Bowyer
,
A.
, and
Pahl
,
A.-K.
,
2006
, “
Biomimetics: Its Practice and Theory
,”
J. R. Soc. Interface
,
3
(
9
), pp.
471
482
.
47.
Jensen
,
D. C.
, and
Huisman
,
N.
,
2015
, “
Biologically Inspired Fault Adaptive Strategies for Engineered Systems
,”
In DS 80-2 Proceedings of the 20th International Conference on Engineering Design
(
ICED 15
) Vol 2: Design Theory and Research Methodology Design Processes, Milan, Italy, July 27–30, pp.
207
214
.https://www.designsociety.org/publication/36244/DS+80-2+Proceedings+of+the+20th+International+Conference+on+Engineering+Design+%28ICED+15%29+Vol+2%3A+Design+Theory+and+Research+Methodology+Design+Processes%2C++Milan%2C+Italy%2C+27-30.07.15
48.
Godwin
,
J. W.
,
Pinto
,
A. R.
, and
Rosenthal
,
N. A.
,
2013
, “
Macrophages Are Required for Adult Salamander Limb Regeneration
,”
Proc. Natl. Acad. Sci.
,
110
(
23
), pp.
9415
9420
.
49.
Gilbert
,
S. F.
,
2003
,
Metamorphosis, Regeneration and Aging
, 6th ed., National Academies Press, Washington, DC, pp. 583–592.
You do not currently have access to this content.