Exoskeletons can assist wearers to relearn natural movements when attached to the human body. However, most current devices are bulky and heavy, which limit their application. In this paper, we integrated type and dimensional synthesis to design one degree-of-freedom (DOF) linkages consisting of only revolute joints with multiple output joints for compact exoskeletons. Type synthesis starts from a four-bar linkage where the output link generates the first angular output. Then, an RRR dyad is connected to the four-bar linkage for the second angular output while ensuring that the overall DOF of the new mechanism is 1. A third output joint is added in a similar manner. During each step, dimensional synthesis is formulated as a constrained optimization problem and solved via genetic algorithms. In the first case study, we developed a finger exoskeleton based on a 10-bar-13-joint linkage for a natural curling motion. The second case study presents a leg exoskeleton based on an 8-bar-10-joint linkage to reproduce a natural walking gait at the hip and knee joints. We manufactured the exoskeletons to validate the proposed approach.

References

1.
Heo
,
P.
,
Gu
,
G. M.
,
Lee
,
S.-J.
,
Rhee
,
K.
, and
Kim
,
J.
,
2012
, “
Current Hand Exoskeleton Technologies for Rehabilitation and Assistive Engineering
,”
Int. J. Precis. Eng. Manuf.
,
13
(
5
), pp.
807
824
.
2.
Maciejasz
,
P.
,
Eschweiler
,
J.
,
Gerlach-Hahn
,
K.
,
Jansen-Troy
,
A.
, and
Leonhardt
,
S.
,
2014
, “
A Survey on Robotic Devices for Upper Limb Rehabilitation
,”
J. Neuroeng. Rehabil.
,
11
(
1
), p.
3
.
3.
Chen
,
B.
,
Ma
,
H.
,
Qin
,
L.-Y.
,
Gao
,
F.
,
Chan
,
K.-M.
,
Law
,
S.-W.
,
Qin
,
L.
, and
Liao
,
W.-H.
,
2016
, “
Recent Developments and Challenges of Lower Extremity Exoskeletons
,”
J. Orthop. Transl.
,
5
, pp.
26
37
.
4.
Takahashi
,
C. D.
,
Der-Yeghiaian
,
L.
,
Le
,
V.
,
Motiwala
,
R. R.
, and
Cramer
,
S. C.
,
2007
, “
Robot-Based Hand Motor Therapy After Stroke
,”
Brain
,
131
(
2
), pp.
425
437
.
5.
Wu
,
J.
,
Huang
,
J.
,
Wang
,
Y.
, and
Xing
,
K.
,
2010
, “
A Wearable Rehabilitation Robotic Hand Driven by PM-TS Actuators
,”
Intelligent Robotics and Applications
, Springer, Berlin, pp.
440
450
.
6.
Sawicki
,
G. S.
,
Gordon
,
K. E.
, and
Ferris
,
D. P.
,
2005
, “
Powered Lower Limb Orthoses: Applications in Motor Adaptation and Rehabilitation
,”
Ninth IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Chicago, IL, June 28–July 1, pp.
206
211
.
7.
Veneman
,
J. F.
,
Kruidhof
,
R.
,
Hekman
,
E. E.
,
Ekkelenkamp
,
R.
,
Van Asseldonk
,
E. H.
, and
Van Der Kooij
,
H.
,
2007
, “
Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
379
386
.
8.
Mao
,
Y.
, and
Agrawal
,
S. K.
,
2012
, “
Design of a Cable-Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation
,”
IEEE Trans. Rob.
,
28
(
4
), pp.
922
931
.
9.
Wege
,
A.
, and
Zimmermann
,
A.
,
2007
, “
Electromyography Sensor Based Control for a Hand Exoskeleton
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Sanya, China, Dec. 15–18, pp.
1470
1475
.
10.
Li
,
J.
,
Zheng
,
R.
,
Zhang
,
Y.
, and
Yao
,
J.
,
2011
, “
iHandRehab: An Interactive Hand Exoskeleton for Active and Passive Rehabilitation
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Zurich, Switzerland, June 29–July 1, pp.
1
6
.
11.
Kawamura, S., and Ito, K., 2000, “
A New Type of Master Robot for Teleoperation Using a Radial Wire Drive System
,” IEEE/RSJ International Conference on Intelligent Robots and Systems' 93 (
IROS'93
), Yokohama, Japan, July 26–30, pp. 55–60.
12.
Morris
,
M.
, and
Shoham
,
M.
, 2009, “
Applications and Theoretical Issues of Cable-Driven Robots
,”
Florida Conference on Recent Advances on Robots
(
FCAR
), Boca Raton, FL, pp.
1
29
.https://www.researchgate.net/publication/281931506_Applications_and_Theoretical_Issues_of_Cable-Driven_Robots
13.
Robson
,
N.
, and
Soh
,
G. S.
,
2016
, “
Geometric Design of Eight-Bar Wearable Devices Based on Limb Physiological Contact Task
,”
Mech. Mach. Theory
,
100
, pp.
358
367
.
14.
Copilusi
,
C.
,
Ceccarelli
,
M.
,
Dumitru
,
N.
, and
Carbone
,
G.
, 2014, “
Design and Simulation of a Leg Exoskeleton Linkage for a Human Rehabilitation System
,”
11th IFToMM International Symposium on Science of Mechanisms and Machines
(
SYROM'13
), pp.
117
125
.https://www.researchgate.net/profile/Marco_Ceccarelli2/publication/267328248_Design_and_Simulation_of_a_Leg_Exoskeleton_Linkage_for_a_Human_Rehabilitation_System/links/561e09cc08aec7945a253c7e/Design-and-Simulation-of-a-Leg-Exoskeleton-Linkage-for-a-Human-Rehabilitation-System.pdf
15.
Ngeo
,
J.
,
Tamei
,
T.
,
Shibata
,
T.
,
Orlando
,
M. F.
,
Behera
,
L.
,
Saxena
,
A.
, and
Dutta
,
A.
,
2013
, “
Control of an Optimal Finger Exoskeleton Based on Continuous Joint Angle Estimation From EMG Signals
,”
35th IEEE Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Osaka, Japan, July 3–7, pp.
338
341
.
16.
Kim
,
K.-J.
,
Kang
,
M.-S.
,
Choi
,
Y.-S.
,
Han
,
J.
, and
Han
,
C.
,
2011
, “
Conceptualization of an Exoskeleton Continuous Passive Motion (CPM) Device Using a Link Structure
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Zurich, Switzerland, June 29–July 1, pp.
1
6
.
17.
Ertas
,
I. H.
,
Hocaoglu
,
E.
,
Barkana
,
D. E.
, and
Patoglu
,
V.
,
2009
, “
Finger Exoskeleton for Treatment of Tendon Injuries
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Kyoto, Japan, June 23–26, pp.
194
201
.
18.
Cui
,
L.
,
Phan
,
A.
, and
Allison
,
G.
,
2015
, “
Design and Fabrication of a Three Dimensional Printable Non-Assembly Articulated Hand Exoskeleton for Rehabilitation
,”
37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Milan, Italy, Aug. 25–29, pp.
4627
4630
.
19.
Bataller
,
A.
,
Cabrera
,
J.
,
Clavijo
,
M.
, and
Castillo
,
J.
,
2016
, “
Evolutionary Synthesis of Mechanisms Applied to the Design of an Exoskeleton for Finger Rehabilitation
,”
Mech. Mach. Theory
,
105
, pp.
31
43
.
20.
Li
,
S.
,
Wang
,
H.
, and
Dai
,
J. S.
,
2015
, “
Assur-Group Inferred Structural Synthesis for Planar Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041001
.
21.
Olson
,
D. G.
,
Erdman
,
A. G.
, and
Riley
,
D. R.
,
1985
, “
A Systematic Procedure for Type Synthesis of Mechanisms With Literature Review Literaturbe-Sprechung
,”
Mech. Mach. Theory
,
20
(
4
), pp.
285
295
.
22.
Buchsbaum
,
F.
, and
Freudenstein
,
F.
,
1970
, “
Synthesis of Kinematic Structure of Geared Kinematic Chains and Other Mechanisms
,”
J. Mech.
,
5
(
3
), pp.
357
392
.
23.
Freudenstein
,
F.
, and
Dobjansky
,
L.
,
1967
, “
Some Applications of Graph Theory to the Structural Analysis of Mechanisms
,”
ASME J. Eng. Ind.
,
89
(
1
), pp.
153
158
.
24.
Ding
,
H.
,
Hou
,
F.
,
Kecskeméthy
,
A.
, and
Huang
,
Z.
,
2012
, “
Synthesis of the Whole Family of Planar 1-DOF Kinematic Chains and Creation of Their Atlas Database
,”
Mech. Mach. Theory
,
47
, pp.
1
15
.
25.
Manolescu
,
N.
,
1973
, “
A Method Based on Baranov Trusses, and Using Graph Theory to Find the Set of Planar Jointed Kinematic Chains and Mechanisms
,”
Mech. Mach. Theory
,
8
(
1
), pp.
3
22
.
26.
Popescu
,
I.
, and
Marghitu
,
D. B.
,
2008
, “
Structural Design of Planar Mechanisms With Dyads
,”
Multibody Syst. Dyn.
,
19
(
4
), pp.
407
425
.
27.
Zhang
,
C.
,
Norton
,
P. R.
, and
Hammonds
,
T.
,
1984
, “
Optimization of Parameters for Specified Path Generation Using an Atlas of Coupler Curves of Geared Five-Bar Linkages
,”
Mech. Mach. Theory
,
19
(
6
), pp.
459
466
.
28.
Kim
,
J.-W.
,
Seo
,
T.
, and
Kim
,
J.
,
2016
, “
A New Design Methodology for Four-Bar Linkage Mechanisms Based on Derivations of Coupler Curve
,”
Mech. Mach. Theory
,
100
, pp.
138
154
.
29.
Erdman
,
A. G.
,
1981
, “
Three and Four Precision Point Kinematic Synthesis of Planar Linkages
,”
Mech. Mach. Theory
,
16
(
3
), pp.
227
245
.
30.
Freudenstein
,
F.
,
2010
, “
Approximate Synthesis of Four-Bar Linkages
,”
Resonance
,
15
(8), pp. 740–767.
31.
Kunjur
,
A.
, and
Krishnamurty
,
S.
,
1997
, “
Genetic Algorithms in Mechanism Synthesis
,”
J. Appl. Mech. Rob.
,
4
(
2
), pp.
18
24
.http://www.ecs.umass.edu/mie/labs/mda/mechanism/papers/genetic.html
32.
Rosen
,
J. B.
,
1960
, “
The Gradient Projection Method for Nonlinear Programming—Part I: Linear Constraints
,”
J. Soc. Ind. Appl. Math.
,
8
(
1
), pp.
181
217
.
33.
Rosen
,
J.
,
1961
, “
The Gradient Projection Method for Nonlinear Programming—Part II: Nonlinear Constraints
,”
J. Soc. Ind. Appl. Math.
,
9
(
4
), pp.
514
532
.
34.
Wolfe, P., 1962, “
Recent developments in nonlinear programming
,”
Adv. Comput.
,
3
, pp. 155–187.
35.
Oliva
,
J. C.
, and
Goodman
,
E. D.
,
2010
, “
Simultaneous Type and Dimensional Synthesis of Planar 1DOF Mechanisms Using Evolutionary Search and Convertible Agents (DETC2009-86722)
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031001
.
36.
Cabrera
,
J.
,
Nadal
,
F.
,
Munoz
,
J.
, and
Simon
,
A.
,
2007
, “
Multiobjective Constrained Optimal Synthesis of Planar Mechanisms Using a New Evolutionary Algorithm
,”
Mech. Mach. Theory
,
42
(
7
), pp.
791
806
.
37.
Acharyya
,
S.
, and
Mandal
,
M.
,
2009
, “
Performance of EAs for Four-Bar Linkage Synthesis
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1784
1794
.
38.
Bulatović
,
R. R.
, and
Dordević
,
S. R.
,
2009
, “
On the Optimum Synthesis of a Four-Bar Linkage Using Differential Evolution and Method of Variable Controlled Deviations
,”
Mech. Mach. Theory
,
44
(
1
), pp.
235
246
.
39.
Shiakolas
,
P.
,
Koladiya
,
D.
, and
Kebrle
,
J.
,
2002
, “
On the Optimum Synthesis of Four-Bar Linkages Using Differential Evolution and the Geometric Centroid of Precision Positions
,”
Inverse Probl. Eng.
,
10
(
6
), pp.
485
502
.
40.
Cabrera
,
J.
,
Simon
,
A.
, and
Prado
,
M.
,
2002
, “
Optimal Synthesis of Mechanisms With Genetic Algorithms
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1165
1177
.
41.
Renner
,
G.
, and
Ekárt
,
A.
,
2003
, “
Genetic Algorithms in Computer Aided Design
,”
Comput.-Aided Des.
,
35
(
8
), pp.
709
726
.
42.
Dollar
,
A. M.
, and
Herr
,
H.
,
2008
, “
Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
144
158
.
43.
Murray
,
A.
, and
Larochelle
,
P.
,
1998
, “
A Classification Scheme for Planar 4R, Spherical 4R, and Spatial RCCC Linkages to Facilitate Computer Animation
,”
ASME
Paper No. DETC98/MECH-5887.https://pdfs.semanticscholar.org/4fb3/1ea48a66178a8701d1bcd5a6b7b074c70777.pdf
44.
Bovi
,
G.
,
Rabuffetti
,
M.
,
Mazzoleni
,
P.
, and
Ferrarin
,
M.
,
2011
, “
A Multiple-Task Gait Analysis Approach: Kinematic, Kinetic and EMG Reference Data for Healthy Young and Adult Subjects
,”
Gait Posture
,
33
(
1
), pp.
6
13
.
You do not currently have access to this content.