Abstract
In this paper, a novel 3-UPU (P and U stand for prismatic and universal joints, respectively) parallel mechanism (PM) and its variant PM are proposed. Both of them have two rotational and one translational (2R1T) degrees of freedom (DOFs) without involving any parasitic motion. Mobility analysis shows that the three constraint forces provided by three limbs of the mechanism are located on the same plane and the mobile platform can translate perpendicular to this plane and rotate around any axis on it. Analysis of the mechanism’s motion characteristics demonstrates that the mobile platform outputs either pure rotation or pure translation. Moreover, the rotational axis can be fixed during the rotation process, which means no parasitic motion is involved. The causes of the motion characteristics are analyzed by the combination of an overall Jacobian matrix, a statistical method, and a geometric method. The PMs only need to translate or rotate once to move from the initial configuration to the final configuration, which allows for easy control of speeds. The relationship between mechanism parameters and singularity is analyzed. A speed control method for the PMs is proposed and a prototype is designed and made. Experiments are conducted to verify the determined motion characteristics, the speed control method, and the singularity analysis.