Abstract

In recent years, the field of structural DNA nanotechnology has advanced rapidly due to transformative design tools. Although these tools have been revolutionary, they still bear one overall limitation of requiring users to fully conceptualize their designs before designing. Recently, a simple computational casting technique was developed using generative optimization strategies to automate the DNA origami nanostructure design. This approach employs a shape annealing algorithm, which creates a formal language of honeycomb nanostructures with shape grammars and drives designs from the language toward a desired configuration using simulated annealing. This initial demonstration of the approach can generate novel scaffold routing schemes for creating solid or hollow structures constrained by the boundaries of polyhedral meshes. The results from the initial approach, particularly from the hollow structures, reveal a challenging design space. This simple technique generates novel scaffold routing schemes that do not replicate the overall polyhedral mesh shape and are limited in their ability to control scaffold path exploration in the design space. This paper demonstrates an approach for achieving different levels of consistent effective wall thicknesses and improving the quality of mesh coverage for hollow structures that can be tuned and optimized by introducing a more refined computational casting technique. We achieve these improvements through changes in the simulated annealing algorithm by adding a Hustin move set algorithm that dynamically adjusts the performance of the overall design and redefining how these hollow designs are articulated. This work illustrates how the technique can navigate a challenging design space to generate effective hollow designs.

References

1.
Williams
,
S.
,
Lund
,
K.
,
Lin
,
C.
,
Wonka
,
P.
,
Lindsay
,
S.
, and
Yan
,
H.
,
2009
, “Tiamat: A Three-Dimensional Editing Tool for Complex DNA Structures,”
DNA Computing
,
A.
Goel
,
F. C.
Simmel
, and
P.
Sosík
, eds.,
Springer
,
Berlin
, pp.
90
101
.
2.
Douglas
,
S. M.
,
Marblestone
,
A. H.
,
Teerapittayanon
,
S.
,
Vazquez
,
A.
,
Church
,
G. M.
, and
Shih
,
W. M.
,
2009
, “
Rapid Prototyping of 3D DNA-Origami Shapes with CaDNAno
,”
Nucleic Acids Res.
,
37
(
15
), pp.
5001
5006
.
3.
Jun
,
H.
,
Zhang
,
F.
,
Shepherd
,
T.
,
Ratanalert
,
S.
,
Qi
,
X.
,
Yan
,
H.
, and
Bathe
,
M.
,
2019
, “
Autonomously Designed Free-Form 2D DNA Origami
,”
Sci. Adv.
,
5
(
1
), p.
eaav0655
. .
Web
.
4.
Huang
,
CM.
,
Kucinic
,
A.
,
Johnson
,
J.A.
,
Su
,
H.-J.
, and
Castro
,
C. E.
,
2021
, “
Integrating Computer-Aided Engineering and Design for DNA Assemblies
,”
Nature Materials
,
20
(
9
), pp.
1264
1271
.
5.
Benson
,
E.
,
Mohammed
,
A.
,
Gardell
,
J.
,
Masich
,
S.
,
Czeizler
,
E.
,
Orponen
,
P.
, and
Högberg
,
B.
,
2015
, “
DNA Rendering of Polyhedral Meshes at the Nanoscale
,”
Nature
,
523
(
7561
), pp.
441
444
.
6.
Veneziano
,
R.
,
Ratanalert
,
S.
,
Zhang
,
K.
,
Zhang
,
F.
,
Yan
,
H.
,
Chiu
,
W.
, and
Bathe
,
M.
,
2016
, “
Designer Nanoscale DNA Assemblies Programmed From the Top Down
,”
Science
,
352
(
6293
), p.
1534
.
7.
Jun
,
H.
,
Shepherd
,
T. R.
,
Zhang
,
K.
,
Bricker
,
W. P.
,
Li
,
S.
,
Chiu
,
W.
, and
Bathe
,
M.
,
2019
, “
Automated Sequence Design of 3D Polyhedral Wireframe DNA Origami with Honeycomb Edges
,”
ACS Nano
,
13
(
2
), pp.
2083
2093
.
8.
Jun
,
H.
,
Wang
,
X.
,
Parsons
,
M. F.
,
Bricker
,
W. P.
,
John
,
T.
,
Li
,
A.
,
Jackson
,
S.
,
Chiu
,
W.
, and
Bathe
,
M.
,
2021
, “
Rapid Prototyping of Arbitrary 2D and 3D Wireframe DNA Origami
,”
Nucleic Acids Res.
,
49
(
18
), pp.
10265
10274
.
9.
METIS—Three-Dimensional, Algorithmically-Generated Library of DNA Origami Shapes
”, https://metis-dna-origami.org/. Accessed February 6, 2022.
10.
Seeman
,
N. C.
,
1982
, “
Nucleic Acid Junctions and Lattices
,”
J. Theor. Biol.
,
99
(
2
), pp.
237
247
.
11.
Rothemund
,
P. W. K.
,
2006
, “
Folding DNA to Create Nanoscale Shapes and Patterns
,”
Nature
,
440
(
7082
), pp.
297
302
.
12.
Seeman
,
N. C.
, and
Sleiman
,
H. F.
,
2017
, “
DNA Nanotechnology
,”
Nat. Rev. Mater.
,
3
(
1
), pp.
1
23
.
13.
Tørring
,
T.
, and
Gothelf
,
K. V.
,
2013
, “
DNA Nanotechnology: A Curiosity or a Promising Technology?
F1000Prime Rep.
,
5
, pp.
14
14
. .
Web
.
14.
Castro
,
C. E.
,
Kilchherr
,
F.
,
Kim
,
D.-N.
,
Shiao
,
E. L.
,
Wauer
,
T.
,
Wortmann
,
P.
,
Bathe
,
M.
, and
Dietz
,
H.
,
2011
, “
A Primer to Scaffolded DNA Origami
,”
Nat. Methods
,
8
(
3
), pp.
221
229
.
15.
Said
,
H.
,
Schüller
,
V. J.
,
Eber
,
F. J.
,
Wege
,
C.
,
Liedl
,
T.
, and
Richert
,
C.
,
2012
, “
M1.3—A Small Scaffold for DNA Origami
,”
Nanoscale
,
5
(
1
), pp.
284
290
.
16.
Sun
,
W.
,
Boulais
,
E.
,
Hakobyan
,
Y.
,
Wang
,
W. L.
,
Guan
,
A.
,
Bathe
,
M.
, and
Yin
,
P.
,
2014
, “
Casting Inorganic Structures With DNA Molds
,”
Science
,
346
(
6210
), p.
1258361
.
17.
Du
,
K.
,
Park
,
M.
,
Ding
,
J.
,
Hu
,
H.
, and
Zhang
,
Z.
,
2017
, “
Sub-10 Nm Patterning With DNA Nanostructures: A Short Perspective
,”
Nanotechnology
,
28
(
44
), p.
442501
.
18.
Douglas
,
S. M.
,
Bachelet
,
I.
, and
Church
,
G. M.
,
2012
, “
A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads
,”
Science
,
335
(
6070
), pp.
831
834
.
19.
Selnihhin
,
D.
,
Sparvath
,
S. M.
,
Preus
,
S.
,
Birkedal
,
V.
, and
Andersen
,
E. S.
,
2018
, “
Multifluorophore DNA Origami Beacon as a Biosensing Platform
,”
ACS Nano
,
12
(
6
), pp.
5699
5708
.
20.
Cagan
,
J.
, and
Mitchell
,
W. J.
,
1993
, “
Optimally Directed Shape Generation by Shape Annealing
,”
Environ. Plann. B
,
20
(
1
), pp.
5
12
.
21.
Zimmermann
,
L.
,
Chen
,
T.
, and
Shea
,
K.
,
2018
, “
A 3D, Performance-Driven Generative Design Framework: Automating the Link From a 3D Spatial Grammar Interpreter to Structural Finite Element Analysis and Stochastic Optimization
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
32
(
2
), pp.
189
199
.
22.
Shea
,
K.
, and
Cagan
,
J.
,
1999
, “
The Design of Novel Roof Trusses with Shape Annealing: Assessing the Ability of a Computational Method in Aiding Structural Designers with Varying Design Intent
,”
Des. Stud.
,
20
(
1
), pp.
3
23
.
23.
Nourian
,
P.
,
Azadi
,
S.
, and
Oval
,
R.
,
2023
, “Generative Design in Architecture: From Mathematical Optimization to Grammatical Customization,”
Computational Design and Digital Manufacturing
,
P.
Kyratsis
,
A.
Manavis
, and
J. P.
Davim
, eds.,
Springer International Publishing
,
Cham
, pp.
1
43
.
24.
Babatunde
,
B.
,
Arias
,
D. S.
,
Cagan
,
J.
, and
Taylor
,
R. E.
,
2021
, “
Generating DNA Origami Nanostructures Through Shape Annealing
,”
Appl. Sci.
,
11
(
7
), p.
2950
.
25.
Stiny
,
G.
,
1980
, “
Introduction to Shape and Shape Grammars
,”
Environ. Plann. B
,
7
(
3
), pp.
343
351
.
26.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
680
.
27.
Hustin
,
S.
, and
Sangiovanni-Vincentelli
,
A.
,
1987
, “
TIM, a New Standard Cell Placement Program Based on the Simulated Annealing Algorithm
,”
IIEEE Physical Design Workshop on Placement and Floorplanning
,
Hilton Head, SC
,
April
.
28.
Szykman
,
S.
, and
Cagan
,
J.
,
1996
, “
Synthesis of Optimal Nonorthogonal Routes
,”
ASME J. Mech. Des.
,
118
(
3
), pp.
419
424
.
29.
Shea
,
K.
, and
Cagan
,
J.
,
1999
, “
Languages and Semantics of Grammatical Discrete Structures
,”
AIEDAM
,
13
(
4
), pp.
241
251
.
30.
Kim
,
D.-N.
,
Kilchherr
,
F.
,
Dietz
,
H.
, and
Bathe
,
M.
,
2012
, “
Quantitative Prediction of 3D Solution Shape and Flexibility of Nucleic Acid Nanostructures
,”
Nucleic Acids Res.
,
40
(
7
), pp.
2862
2868
.
31.
Maffeo
,
C.
, and
Aksimentiev
,
A.
,
2020
, “
MrDNA: A Multi-Resolution Model for Predicting the Structure and Dynamics of DNA Systems
,”
Nucleic Acids Res.
,
48
(
9
), pp.
5135
5146
.
32.
Yoo
,
J.
, and
Aksimentiev
,
A.
,
2013
, “
In Situ Structure and Dynamics of DNA Origami Determined Through Molecular Dynamics Simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
50
), pp.
20099
20104
.
33.
Doye
,
J. P. K.
,
Fowler
,
H.
,
Prešern
,
D.
,
Bohlin
,
J.
,
Rovigatti
,
L.
,
Romano
,
F.
,
Šulc
,
P.
, et al
,
2020
, “
The oxDNA Coarse-Grained Model as a Tool to Simulate DNA Origami
,” arXiv:2004.05052 [cond-mat].
34.
Ouldridge
,
T. E.
,
Louis
,
A. A.
, and
Doye
,
J. P. K.
,
2011
, “
Structural, Mechanical, and Thermodynamic Properties of a Coarse-Grained DNA Model
,”
J. Chem. Phys.
,
134
(
8
), p.
085101
.
35.
Šulc
,
P.
,
Romano
,
F.
,
Ouldridge
,
T. E.
,
Rovigatti
,
L.
,
Doye
,
J. P. K.
, and
Louis
,
A. A.
,
2012
, “
Sequence-Dependent Thermodynamics of a Coarse-Grained DNA Model
,”
J. Chem. Phys.
,
137
(
13
), p.
135101
.
36.
Snodin
,
B. E. K.
,
Randisi
,
F.
,
Mosayebi
,
M.
,
Šulc
,
P.
,
Schreck
,
J. S.
,
Romano
,
F.
,
Ouldridge
,
T. E.
, et al
,
2015
, “
Introducing Improved Structural Properties and Salt Dependence Into a Coarse-Grained Model of DNA
,”
J. Chem. Phys.
,
142
(
23
), p.
234901
.
37.
Snodin
,
B. E. K.
,
Schreck
,
J. S.
,
Romano
,
F.
,
Louis
,
A. A.
, and
Doye
,
J. P. K.
,
2019
, “
Coarse-Grained Modelling of the Structural Properties of DNA Origami
,”
Nucleic Acids Res.
,
47
(
3
), pp.
1585
1597
.
38.
Engel
,
M. C.
,
Smith
,
D. M.
,
Jobst
,
M. A.
,
Sajfutdinow
,
M.
,
Liedl
,
T.
,
Romano
,
F.
,
Rovigatti
,
L.
,
Louis
,
A. A.
, and
Doye
,
J. P. K.
,
2018
, “
Force-Induced Unravelling of DNA Origami
,”
ACS Nano
,
12
(
7
), pp.
6734
6747
.
39.
Shi
,
Z.
, and
Arya
,
G.
,
2020
, “
Free Energy Landscape of Salt-Actuated Reconfigurable DNA Nanodevices
,”
Nucleic Acids Res.
,
48
(
2
), pp.
548
560
.
40.
Poppleton
,
E.
,
Bohlin
,
J.
,
Matthies
,
M.
,
Sharma
,
S.
,
Zhang
,
F.
, and
Šulc
,
P.
,
2020
, “
Design, Optimization and Analysis of Large DNA and RNA Nanostructures Through Interactive Visualization, Editing and Molecular Simulation
,”
Nucleic Acids Res.
,
48
(
12
), p.
e72
.
41.
Doty
,
D.
,
Lee
,
B. L.
, and
Stérin
,
T.
,
2020
, “
Scadnano: A Browser-Based, Scriptable Tool for Designing DNA Nanostructures
,” arXiv:2005.11841 [cs, q-bio].
42.
Suma
,
A.
,
Poppleton
,
E.
,
Matthies
,
M.
,
Šulc
,
P.
,
Romano
,
F.
,
Louis
,
A. A.
,
Doye
,
J. P. K.
,
Micheletti
,
C.
, and
Rovigatti
,
L.
,
2019
, “
TacoxDNA: A User-Friendly Web Server for Simulations of Complex DNA Structures, From Single Strands to Origami
,”
J. Comput. Chem.
,
40
(
29
), pp.
2586
2595
.
43.
Goddard
,
T. D.
,
Huang
,
C. C.
,
Meng
,
E. C.
,
Pettersen
,
E. F.
,
Couch
,
G. S.
,
Morris
,
J. H.
, and
Ferrin
,
T. E.
,
2018
, “
UCSF ChimeraX: Meeting Modern Challenges in Visualization and Analysis
,”
Protein Sci.
,
27
(
1
), pp.
14
25
.
44.
Pettersen
,
E. F.
,
Goddard
,
T. D.
,
Huang
,
C. C.
,
Meng
,
E. C.
,
Couch
,
G. S.
,
Croll
,
T. I.
,
Morris
,
J. H.
, and
Ferrin
,
T. E.
,
2021
, “
UCSF ChimeraX: Structure Visualization for Researchers, Educators, and Developers
,”
Protein Sci.
,
30
(
1
), pp.
70
82
.
45.
Rutenbar
,
R. A.
,
1989
, “
Simulated Annealing Algorithms: An Overview
,”
IEEE Circuits Devices Mag.
,
5
(
1
), pp.
19
26
.
46.
Everitt
,
B. S.
,
2002
,
The Cambridge Dictionary of Statistics
,
Cambridge University Press
,
Cambridge, United Kingdom
.
47.
Ke
,
Y.
,
Bellot
,
G.
,
Voigt
,
N. V.
,
Fradkov
,
E.
, and
Shih
,
W. M.
,
2012
, “
Two Design Strategies for Enhancement of Multilayer–DNA-Origami Folding: Underwinding for Specific Intercalator Rescue and Staple-Break Positioning
,”
Chem. Sci.
,
3
(
8
), pp.
2587
2597
.
48.
Majikes
,
J. M.
, and
Liddle
,
J. A.
,
2021
, “
DNA Origami Design: A How-To Tutorial
,”
J. Res. Natl. Inst. Stand.
,
126
.
You do not currently have access to this content.