Abstract

In many design automation applications, accurate segmentation and classification of 3D surfaces and extraction of geometric insight from 3D models can be pivotal. This paper primarily introduces a machine learning-based scheme that leverages graph neural networks for handling 3D geometries, specifically for surface classification. Our model demonstrates superior performance against two state-of-the-art models, PointNet + + and PointMLP, in terms of surface classification accuracy, beating both models. Central to our contribution is the novel incorporation of conformal predictions, a method that offers robust uncertainty quantification and handling with marginal statistical guarantees. Unlike traditional approaches, conformal predictions enable our model to ensure precision, especially in challenging scenarios where mistakes can be highly costly. This robustness proves invaluable in design applications, and as a case in point, we showcase its utility in automating the computational fluid dynamics meshing process for aircraft models based on expert guidance. Our results reveal that our automatically generated mesh, guided by the proposed rules by experts enabled through the segmentation model, is not only efficient but matches the quality of expert-generated meshes, leading to accurate simulations.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
PaDGAN: Learning to Generate High-Quality Novel Designs
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031703
.
2.
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
MO-PaDGAN: Reparameterizing Engineering Designs for Augmented Multi-objective Optimization
,”
Appl. Soft. Comput.
,
113
, p.
107909
.
3.
Heyrani Nobari
,
A.
,
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
PcDGAN: A Continuous Conditional Diverse Generative Adversarial Network for Inverse Design
,”
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
,
Virtual Event, Singapore
,
Aug. 14–18
, pp.
606
616
.
4.
Langroudi
,
A. T.
,
Afifi
,
F. Z.
,
Nobari
,
A. H.
, and
Najafi
,
A.
,
2020
, “
Modeling and Numerical Investigation on Multi-objective Design Improvement of a Novel Cross-Flow Lift-Based Turbine for In-Pipe Hydro Energy Harvesting Applications
,”
Energy Convers. Manage.
,
203
, p.
112233
.
5.
Plewa
,
T.
,
Linde
,
T.
, and
Weirs
,
V. G.
,
2005
, “
Adaptive Mesh Refinement: Theory and Applications
,”
Proceedings of the Chicago Workshop on Adaptive Mesh Refinement Methods
,
Chicago, IL
,
Sept. 3–5
,
Springer
.
6.
Fidkowski
,
K. J.
, and
Darmofal
,
D. L.
,
2011
, “
Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics
,”
AIAA J.
,
49
(
4
), pp.
673
694
.
7.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
8.
Huang
,
K.
,
Krügener
,
M.
,
Brown
,
A.
,
Menhorn
,
F.
,
Bungartz
,
H.-J.
, and
Hartmann
,
D.
,
2021
, Machine Learning-Based Optimal Mesh Generation in Computational Fluid Dynamics, preprint arXiv:2102.12923.
9.
Fidkowski
,
K. J.
, and
Chen
,
G.
,
2021
, “
Metric-Based, Goal-Oriented Mesh Adaptation Using Machine Learning
,”
J. Comput. Phys.
,
426
, p.
109957
.
10.
Pfaff
,
T.
,
Fortunato
,
M.
,
Sanchez-Gonzalez
,
A.
, and
Battaglia
,
P.
,
2021
, “
Learning Mesh-Based Simulation With Graph Networks
,”
International Conference on Learning Representations
,
Virtual
,
May
.
11.
Sadinle
,
M.
,
Lei
,
J.
, and
Wasserman
,
L.
,
2019
, “
Least Ambiguous Set-Valued Classifiers With Bounded Error Levels
,”
J. Am. Stat. Assoc.
,
114
(
525
), pp.
223
234
.
12.
Romano
,
Y.
,
Sesia
,
M.
, and
Candès
,
E. J.
,
2020
, “
Classification With Valid and Adaptive Coverage
,”
Proceedings of the 34th International Conference on Neural Information Processing Systems
,
Vancouver, Canada
,
December
,
Curran Associates Inc.
,
Red Hook, NY
.
13.
Angelopoulos
,
A.
,
Bates
,
S.
,
Jordan
,
M. I.
, and
Malik
,
J.
,
2020
, “
Uncertainty Sets for Image Classifiers Using Conformal Prediction
,” International Conference on Learning Representations, Virtual.
14.
Su
,
H.
,
Maji
,
S.
,
Kalogerakis
,
E.
, and
Learned-Miller
,
E. G.
,
2015
, “
Multi-view Convolutional Neural Networks for 3D Shape Recognition
,”
2015 IEEE International Conference on Computer Vision (ICCV)
,
Los Alamitos, CA
,
Dec. 7–13
, pp.
945
953
.
15.
Kalogerakis
,
E.
,
Averkiou
,
M.
,
Maji
,
S.
, and
Chaudhuri
,
S.
,
2017
, “
3D Shape Segmentation With Projective Convolutional Networks
,”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
,
July 21–26
, pp.
3779
3788
.
16.
Wu
,
Z.
,
Song
,
S.
,
Khosla
,
A.
,
Yu
,
F.
,
Zhang
,
L.
,
Tang
,
X.
, and
Xiao
,
J.
,
2015
, “
3D ShapeNets: A Deep Representation for Volumetric Shapes
,”
2015 IEEE International Conference on Computer Vision (ICCV)
,
Los Alamitos, CA
,
Dec. 7–13
, pp.
1912
1920
.
17.
Brock
,
A.
,
Lim
,
T.
,
Ritchie
,
J. M.
, and
Weston
,
N.
,
2016
, “
Generative and Discriminative Voxel Modeling With Convolutional Neural Networks
,” Neural Inofrmation Processing Conference: 3D Deep Learning, Barcelona, Spain.
18.
Tchapmi
,
L. P.
,
Choy
,
C. B.
,
Armeni
,
I.
,
Gwak
,
J.
, and
Savarese
,
S.
,
2017
, “
SEGCloud: Semantic Segmentation of 3D Point Clouds
,” 2017 International Conference on 3D Vision (3DV), pp.
537
547
.
19.
Hanocka
,
R.
,
Fish
,
N.
,
Wang
,
Z.
,
Giryes
,
R.
,
Fleishman
,
S.
, and
Cohen-Or
,
D.
,
2018
, “
ALIGNet: Partial-Shape Agnostic Alignment Via Unsupervised Learning
,”
ACM Trans. Graph.
,
38
(
1
), pp.
1:1
1:14
.
20.
Maturana
,
D.
, and
Scherer
,
S.
,
2015
, “
VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 3
,pp.
922
928
.
21.
Sun
,
K.
,
Zhang
,
J.
,
Liu
,
J.
,
Yu
,
R.
, and
Song
,
Z.
,
2021
, “
DRCNN: Dynamic Routing Convolutional Neural Network for Multi-view 3D Object Recognition
,”
Trans. Img. Proc.
,
30
, pp.
868
877
.
22.
Qi
,
C. R.
,
Su
,
H.
,
Mo
,
K.
, and
Guibas
,
L. J.
,
2017
, “
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
,
July
, pp.
77
85
.
23.
Qi
,
C. R.
,
Yi
,
L.
,
Su
,
H.
, and
Guibas
,
L. J.
,
2017
, “
PointNet + +: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
,”
Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17)
,
Red Hook, NY
, Curran Associates Inc., pp.
5105
5114
.
24.
Wang
,
Y.
,
Sun
,
Y.
,
Liu
,
Z.
,
Sarma
,
S. E.
,
Bronstein
,
M. M.
, and
Solomon
,
J. M.
,
2019
, “
Dynamic Graph CNN for Learning on Point Clouds
,”
ACM Trans. Graph.
,
38
(
5
).
25.
Huang
,
Q.
,
Wang
,
W.
, and
Neumann
,
U.
,
2018
, “
Recurrent Slice Networks for 3D Segmentation of Point Clouds
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–23
, pp.
2626
2635
.
26.
Li
,
Y.
,
Bu
,
R.
,
Sun
,
M.
,
Wu
,
W.
,
Di
,
X.
, and
Chen
,
B.
,
2018
, “PointCNN: Convolution on X-Transformed Points,”
Advances in Neural Information Processing Systems
, Vol.
31
,
S.
Bengio
,
H.
Wallach
,
H.
Larochelle
,
K.
Grauman
,
N.
Cesa-Bianchi
, and
R.
Garnett
, eds.,
Curran Associates, Inc.
27.
Wu
,
W.
,
Qi
,
Z.
, and
Fuxin
,
L.
,
2019
, “
PointConv: Deep Convolutional Networks on 3D Point Clouds
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Long Beach, CA
,
June
, pp.
9613
9622
.
28.
Ma
,
X.
,
Qin
,
C.
,
You
,
H.
,
Ran
,
H.
, and
Fu
,
Y.
,
2022
, “
Rethinking Network Design and Local Geometry in Point Cloud: A Simple Residual MLP Framework
,” International Conference on Learning Representations, Virtual, April.
29.
Hanocka
,
R.
,
Hertz
,
A.
,
Fish
,
N.
,
Giryes
,
R.
,
Fleishman
,
S.
, and
Cohen-Or
,
D.
,
2019
, “
MeshCNN: A Network With an Edge
,”
ACM Trans. Graph.
,
38
(
4
), pp.
1
12
.
30.
Lian
,
C.
,
Wang
,
L.
,
Wu
,
T.-H.
,
Wang
,
F.
,
Yap
,
P.-T.
,
Ko
,
C.-C.
, and
Shen
,
D.
,
2020
, “
Deep Multi-scale Mesh Feature Learning for Automated Labeling of Raw Dental Surfaces From 3D Intraoral Scanners
,”
IEEE Trans. Med. Imaging
,
39
(
7
), pp.
2440
2450
.
31.
Zheng
,
Y.
,
Chen
,
B.
,
Shen
,
Y.
, and
Shen
,
K.
,
2022
, “
TeethGNN: Semantic 3D Teeth Segmentation With Graph Neural Networks
,”
IEEE Trans. Visual Comput. Graphics
, pp.
1
1
.
32.
Wen
,
T.
,
Zhuang
,
J.
,
Du
,
Y.
,
Yang
,
L.
, and
Xu
,
J.
,
2021
, “
Dual-Sampling Attention Pooling for Graph Neural Networks on 3D Mesh
,”
Comput. Methods Programs Biomed.
,
208
, p.
106250
.
33.
Qi
,
X.
,
Liao
,
R.
,
Jia
,
J.
,
Fidler
,
S.
, and
Urtasun
,
R.
,
2017
, “
3D Graph Neural Networks for RGBD Semantic Segmentation
,”
Proceedings of the IEEE International Conference on Computer Vision (ICCV)
,
Venice, Italy
,
October
, pp.
5209
5218
.
34.
Zhang
,
Z.
,
Wang
,
Y.
,
Jimack
,
P. K.
, and
Wang
,
H.
,
2020
, “MeshingNet: A New Mesh Generation Method Based on Deep Learning,”
Computational Science – ICCS 2020
,
Krzhizhanovskaya
,
V. V.
,
Závodszky
,
G.
,
Lees
,
M. H.
,
Dongarra
,
J. J.
,
Sloot
,
P. M. A.
,
Brissos
,
S.
,
Teixeira
,
J.
, eds.,
Springer International Publishing
,
Cham
, pp.
186
198
.
35.
Wu
,
H.
,
Xu
,
Z.
,
Liu
,
C.
,
Akbar
,
A.
,
Yue
,
H.
,
Zeng
,
D.
, and
Yang
,
H.
,
2021
, “
LV-GCNN: A Lossless Voxelization Integrated Graph Convolutional Neural Network for Surface Reconstruction From Point Clouds
,”
Int. J. Appl. Earth Obs. Geoinf.
,
103
, p.
102504
.
36.
Nash
,
C.
,
Ganin
,
Y.
,
Eslami
,
S. M. A.
, and
Battaglia
,
P. W.
,
2020
, “
PolyGen: An Autoregressive Generative Model of 3D Meshes
,”
Proceedings of the 37th International Conference on Machine Learning
,
Virtual
,
July
, pp. 7220—7229.
37.
Tang
,
J.
,
Ren
,
J.
,
Zhou
,
H.
,
Liu
,
Z.
, and
Zeng
,
G.
,
2024
, “
DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation
,” The Twelfth International Conference on Learning Representations, Vienna, Austria.
38.
Cao
,
Y.
,
Chai
,
M.
,
Li
,
M.
, and
Jiang
,
C.
,
2023
, Efficient Learning of Mesh-Based Physical Simulation With BSMS-GNN, 2210.02573.
39.
Karras
,
T.
,
Aittala
,
M.
,
Hellsten
,
J.
,
Laine
,
S.
,
Lehtinen
,
J.
, and
Aila
,
T.
,
2020
,
Training Generative Adversarial Networks With Limited Data
,
ARXIV.2006.06676
. arxiv.org/abs/2006.06676
40.
Nobari
,
A. H.
,
Chen
,
W.
, and
Ahmed
,
F.
,
2022
, “
Range-Constrained Generative Adversarial Network: Design Synthesis Under Constraints Using Conditional Generative Adversarial Networks
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021708
.
41.
Veličković
,
P.
,
Cucurull
,
G.
,
Casanova
,
A.
,
Romero
,
A.
,
Liò
,
P.
, and
Bengio
,
Y.
,
2017
, “
Graph Attention Networks
,” International Conference on Learning Representations, Vancouver, Canada.
42.
McDonald
,
R. A.
, and
Gloudemans
,
J. R.
, Open Vehicle Sketch Pad: An Open Source Parametric Geometry and Analysis Tool for Conceptual Aircraft Design.
43.
Cignoni
,
P.
,
Callieri
,
M.
,
Corsini
,
M.
,
Dellepiane
,
M.
,
Ganovelli
,
F.
, and
Ranzuglia
,
G.
,
2008
, “MeshLab: An Open-Source Mesh Processing Tool,”
Eurographics Italian Chapter Conference
,
Salerno, Italy
,
V.
Scarano
,
R. D.
Chiara
, and
U.
Erra
, eds.,
The Eurographics Association
.
44.
Hoppe
,
H.
,
DeRose
,
T.
,
Duchamp
,
T.
,
McDonald
,
J.
, and
Stuetzle
,
W.
,
1993
, “
Mesh Optimization
,”
Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques
,
New York, NY
,
Aug. 1–6
,pp.
19
26
.
45.
Kipf
,
T. N.
, and
Welling
,
M.
,
2016
, “
Semi-Supervised Classification With Graph Convolutional Networks
,” International Conference on Learning Representations, San Juan, Puerto Rico.
You do not currently have access to this content.