Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Designers may often ask themselves how to adjust their design concepts to achieve demanding functional goals. To answer such questions, designers must often consider counterfactuals, weighing design alternatives, and their projected performance. This paper introduces multi-objective counterfactuals for design (MCD), a computational tool that automates and streamlines the counterfactual search process and recommends targeted design modifications that meet designers’ unique requirements. MCD improves upon existing counterfactual search methods by supporting multi-objective requirements, which are crucial in design problems, and by decoupling the counterfactual search and sampling processes, thus enhancing efficiency and facilitating objective trade-off visualization. The paper showcases MCD’s capabilities in complex engineering tasks using three demonstrative bicycle design challenges. First, MCD effectively identifies design modifications that quantifiably enhance functional performance, strengthening the bike frame and saving weight. Second, MCD modifies parametric bike models in a cross-modal fashion to resemble subjective text prompts or reference images. In a final multidisciplinary case study, MCD tackles all the quantitative and subjective design requirements introduced in the first two problems, while simultaneously customizing a bike design to an individual rider’s biomechanical attributes. By exploring hypothetical design alterations and their impact on multiple design objectives, MCD recommends effective design modifications for practitioners seeking to make targeted enhancements to their designs.

References

1.
Roese
,
N. J.
, and
Olson
,
J. M.
,
2014
,
What Might Have Been: The Social Psychology of Counterfactual Thinking
,
Psychology Press
,
New York
.
2.
Hoerl
,
C.
,
McCormack
,
T.
, and
Beck
,
S. R.
,
2011
,
Understanding Counterfactuals, Understanding Causation: Issues in Philosophy and Psychology
,
Oxford University Press
,
New York
.
3.
Fearon
,
J. D.
,
1991
, “
Counterfactuals and Hypothesis Testing in Political Science
,”
World Pol.
,
43
(
2
), pp.
169
195
.
4.
Verma
,
S.
,
Boonsanong
,
V.
,
Hoang
,
M.
,
Hines
,
K. E.
,
Dickerson
,
J. P.
, and
Shah
,
C.
,
2020
, “
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
,”
ACM Computing Surveys
.
5.
Guidotti
,
R.
,
2022
, “
Counterfactual Explanations and How to Find Them: Literature Review and Benchmarking
,”
Data Mining Knowl. Discov.
, pp.
1
55
.
6.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
,
2000
,
Principles of Optimal Design: Modeling and Computation
,
Cambridge University Press
,
Cambridge, UK
.
7.
Gero
,
J. S.
,
1985
,
Design Optimization
,
Academic Press
,
Orlando, FL
.
8.
Gunantara
,
N.
,
2018
, “
A Review of Multi-Objective Optimization: Methods and Its Applications
,”
Cogent Eng.
,
5
(
1
), p.
1502242
.
9.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
10.
Wachter
,
S.
,
Mittelstadt
,
B.
, and
Russell
,
C.
,
2017
, “
Counterfactual Explanations Without Opening the Black Box: Automated Decisions and the GDPR
,”
Harv. J. Law Technol.
,
31
(
2
), p.
841
.
11.
Mothilal
,
R. K.
,
Sharma
,
A.
, and
Tan
,
C.
,
2020
, “
Explaining Machine Learning Classifiers Through Diverse Counterfactual Explanations
,”
ACM Conference on Fairness, Accountability, and Transparancy
,
Barcelona, Spain
,
Jan. 27–30
, pp.
607
617
.
12.
Poyiadzi
,
R.
,
Sokol
,
K.
,
Santos-Rodriguez
,
R.
,
De Bie
,
T.
, and
Flach
,
P.
,
2020
, “
Face: Feasible and Actionable Counterfactual Explanations
,”
AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society
,
New York
,
Feb. 7–8
, pp.
344
350
.
13.
Dandl
,
S.
,
Molnar
,
C.
,
Binder
,
M.
, and
Bischl
,
B.
,
2020
, “
Multi-objective Counterfactual Explanations
,” Parallel Problem Solving from Nature—PPSN XVI: 16th International Conference, PPSN 2020, Proceedings, Part I, Leiden, Sept. 5–9,
Springer
, pp.
448
469
.
14.
Ribeiro
,
M. T.
,
Singh
,
S.
, and
Guestrin
,
C.
,
2016
, “
“Why Should I Trust You?” Explaining the Predictions of Any Classifier
,”
SIG ACM Conference on Knowledge Discovery and Data Mining
,
New York
,
Aug. 13–17
, pp.
1135
1144
.
15.
Lundberg
,
S. M.
, and
Lee
,
S.-I.
,
2017
, “
A Unified Approach to Interpreting Model Predictions
,”
Conference on Neural Information Processing Systems
,
Long Beatch, CA
,
2017
.
16.
Joung
,
J.
, and
Kim
,
H. M.
,
2021
, “
Approach for Importance—Performance Analysis of Product Attributes From Online Reviews
,”
ASME J. Mech. Des.
,
143
(
8
), p.
081705
.
17.
Regenwetter
,
L.
,
Curry
,
B.
, and
Ahmed
,
F.
,
2022
, “
BIKED: A Dataset for Computational Bicycle Design With Machine Learning Benchmarks
,”
ASME J. Mech. Des.
,
144
(
3
), p.
031706
.
18.
Rodríguez-Pérez
,
R.
, and
Bajorath
,
J.
,
2020
, “
Interpretation of Machine Learning Models Using Shapley Values: Application to Compound Potency and Multi-target Activity Predictions
,”
J. Comput. Aided. Mol. Des.
,
34
, pp.
1013
1026
.
19.
Dachowicz
,
A.
,
Mall
,
K.
,
Balasubramani
,
P.
,
Maheshwari
,
A.
,
Raz
,
A. K.
,
Panchal
,
J. H.
, and
DeLaurentis
,
D. A.
,
2022
, “
Mission Engineering and Design Using Real-Time Strategy Games: An Explainable AI Approach
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021710
.
20.
Song
,
B.
,
Zhou
,
R.
, and
Ahmed
,
F.
,
2024
, “
Multi-Modal Machine Learning in Engineering Design: A Review and Future Directions
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
1
), p.
010801
.
21.
Ahmed
,
F.
,
Cui
,
Y.
,
Fu
,
Y.
, and
Chen
,
W.
,
2022
, “
Product Competition Prediction in Engineering Design Using Graph Neural Networks
,”
ASME Open J. Eng.
,
1
, p.
011020
.
22.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
23.
Regenwetter
,
L.
,
Srivastava
,
A.
,
Gutfreund
,
D.
, and
Ahmed
,
F.
,
2023
, “
Beyond Statistical Similarity: Rethinking Metrics for Deep Generative Models in Engineering Design
,”
Computer-Aided Design
,
165
.
24.
Cai
,
H.
,
Zheng
,
V. W.
, and
Chang
,
K. C.-C.
,
2018
, “
A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications
,”
IEEE Trans. Knowl. Data Eng.
,
30
(
9
), pp.
1616
1637
.
25.
Faghri
,
F.
,
Fleet
,
D. J.
,
Kiros
,
J. R.
, and
Fidler
,
S.
,
2017
, “VSE++: Improving Visual-Semantic Embeddings With Hard Negatives,” preprint arXiv:1707.05612.
26.
Dai
,
G.
,
Xie
,
J.
, and
Fang
,
Y.
,
2018
, “
Siamese CNN-bilstm Architecture for 3D Shape Representation Learning
,”
International Joint Conference on Artificial Intelligence
,
Stockholm, Sweden
, pp.
670
676
.
27.
Devlin
,
J.
,
Chang
,
M.-W.
,
Lee
,
K.
, and
Toutanova
,
K.
,
2019
, “
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
,”
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
,
Minneapolis, MN
,
2019
.
28.
Cer
,
D.
,
Yang
,
Y.
,
Kong
,
S.-y.
,
Hua
,
N.
,
Limtiaco
,
N.
,
John
,
R. S.
,
Constant
,
N.
,
Guajardo-Cespedes
,
M.
,
Yuan
,
S.
,
Tar
,
C.
, and
Sung
,
Y. H.
,
2018
, “Universal Sentence Encoder,” preprint arXiv:1803.11175.
29.
Radford
,
A.
,
Kim
,
J. W.
,
Hallacy
,
C.
,
Ramesh
,
A.
,
Goh
,
G.
,
Agarwal
,
S.
,
Sastry
,
G.
,
Askell
,
A.
,
Mishkin
,
P.
,
Clark
,
J.
, and
Krueger
,
G.
,
2021
, “
Learning Transferable Visual Models From Natural Language Supervision
,”
International Conference on Machine Learning
,
Virtual
, PMLR, pp.
8748
8763
.
30.
Rombach
,
R.
,
Blattmann
,
A.
,
Lorenz
,
D.
,
Esser
,
P.
, and
Ommer
,
B.
,
2022
, “
High-Resolution Image Synthesis With Latent Diffusion Models
,”
Conference on Computer Vision and Pattern Recognition
,
New Orleans, LA
,
June 18–24
, pp.
10684
10695
.
31.
Gower
,
J. C.
,
1971
, “
A General Coefficient of Similarity and Some of Its Properties
,”
Biometrics
,
27
(
4
), pp.
857
871
.
32.
Blank
,
J.
, and
Deb
,
K.
,
2020
, “
PYMOO: Multi-objective Optimization in Python
,”
IEEE Access
,
8
, pp.
89497
89509
.
33.
Regenwetter
,
L.
, and
Ahmed
,
F.
,
2022
, “
Design Target Achievement Index: A Differentiable Metric to Enhance Deep Generative Models in Multi-Objective Inverse Design
,”
International Design Engineering Technologies Conference
,
St. Louis, MO.
,
2022
.
34.
Regenwetter
,
L.
,
Weaver
,
C.
, and
Ahmed
,
F.
,
2023
, “
Framed: An Automl Approach for Structural Performance Prediction of Bicycle Frames
,”
Comput. Aided Des.
,
156
, p.
103446
.
35.
Regenwetter
,
L.
,
Obaideh
,
Y. A.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2024
, “Biked++: A Multimodal Dataset of 1.4 Million Bicycle Image and Parametric CAD Designs,” preprint arXiv:2402.05301.
36.
Erickson
,
N.
,
Mueller
,
J.
,
Shirkov
,
A.
,
Zhang
,
H.
,
Larroy
,
P.
,
Li
,
M.
, and
Smola
,
A.
,
2020
, “Autogluon-Tabular: Robust and Accurate Automl For Structured Data,” preprint arXiv:2003.06505.
37.
Regenwetter
,
L.
,
2022
,
Data-Driven Bicycle Design Using Performance-Aware Deep Generative Models
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
38.
Burt
,
P.
,
2022
,
Bike Fit 2nd Edition: Optimise Your Bike Position for High Performance and Injury Avoidance
,
Bloomsbury Publishing
,
London, UK
.
You do not currently have access to this content.