Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Tensor datatypes representing field variables like stress, displacement, velocity, etc., have increasingly become a common occurrence in data-driven modeling and analysis of simulations. Numerous methods [such as convolutional neural networks (CNNs)] exist to address the meta-modeling of field data from simulations. As the complexity of the simulation increases, so does the cost of acquisition, leading to limited data scenarios. Modeling of tensor datatypes under limited data scenarios remains a hindrance for engineering applications. In this article, we introduce a direct image-to-image modeling framework of convolutional autoencoders enhanced by information bottleneck loss function to tackle the tensor data types with limited data. The information bottleneck method penalizes the nuisance information in the latent space while maximizing relevant information making it robust for limited data scenarios. The entire neural network framework is further combined with robust hyperparameter optimization. We perform numerical studies to compare the predictive performance of the proposed method with a dimensionality reduction-based surrogate modeling framework on a representative linear elastic ellipsoidal void problem with uniaxial loading. The data structure focuses on the low-data regime (fewer than 100 data points) and includes the parameterized geometry of the ellipsoidal void as the input and the predicted stress field as the output. The results of the numerical studies show that the information bottleneck approach yields improved overall accuracy and more precise prediction of the extremes of the stress field. Additionally, an in-depth analysis is carried out to elucidate the information compression behavior of the proposed framework.

References

1.
Michopoulos
,
J. G.
,
Farhat
,
C.
, and
Fish
,
J.
,
2005
, “
Modeling and Simulation of Multiphysics Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
198
213
.
2.
Saseendran
,
V.
,
Berggreen
,
C.
, and
Krueger
,
R.
,
2020
, “
Mode Mixity Analysis of Face/Core Debonds in a Single Cantilever Beam Sandwich Specimen
,”
J. Sandwich Struct. Mater.
,
22
(
6
), pp.
1879
1909
.
3.
Seneviratne
,
W.
,
Saseendran
,
V.
,
Perera
,
S.
,
Saathoff
,
B.
,
Rubesinghe
,
L.
, and
Tomblin
,
J.
,
2019
, “
Numerical Studies on Buckling and Post-Buckling Behavior of Stiffened Curved Composite Panel With Repairs
,”
Proceedings of the 34th Technical Conference of the American Society for Composites
.
4.
Saseendran
,
V.
,
Carlsson
,
L. A.
, and
Berggreen
,
C.
,
2018
, “
Shear and Foundation Effects on Crack Root Rotation and Mode-Mixity in Moment- and Force-Loaded Single Cantilever Beam Sandwich Specimen
,”
J. Compos. Mater.
,
52
(
18
), pp.
2537
2547
.
5.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
6.
Shi
,
F.
,
Chen
,
L.
,
Han
,
J.
, and
Childs
,
P.
,
2017
, “
A Datadriven Text Mining and Semantic Network Analysis for Design Information Retrieval
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111402
.
7.
Zhao
,
X.
,
Azarm
,
S.
, and
Balachandran
,
B.
,
2021
, “
Online Data-Driven Prediction of Spatio-Temporal System Behavior Using High-Fidelity Simulations and Sparse Sensor Measurements
,”
ASME J. Mech. Des.
,
143
(
2
), p.
021701
.
8.
Li
,
X.
,
Wang
,
Y.
, and
Sha
,
Z.
,
2023
, “
Deep Learning Methods of Cross-Modal Tasks for Conceptual Design of Product Shapes: A Review
,”
ASME J. Mech. Des.
,
145
(
4
), p.
041401
.
9.
Zhao
,
Y.
,
Jiang
,
C.
,
Vega
,
M. A.
,
Todd
,
M. D.
, and
Hu
,
Z.
,
2022
, “
A Comparative Study of Surrogate Modeling of Nonlinear Dynamic Systems
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
86212
,
American Society of Mechanical Engineers
, p.
V002T02A040
.
10.
Jo
,
H.
,
Song
,
B.-U.
,
Huh
,
J.-Y.
,
Lee
,
S.
, and
Lee
,
I.
,
2024
, “
Modified Structure of Deep Neural Network for Training Multi-Fidelity Data With Non-Common Input Variables
,”
ASME J. Mech. Des.
,
146
(
10),
p.
101702
.
11.
Ferrero
,
V.
,
DuPont
,
B.
,
Hassani
,
K.
, and
Grandi
,
D.
,
2022
, “
Classifying Component Function in Product Assemblies With Graph Neural Networks
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021406
.
12.
Tran
,
A.
,
Maupin
,
K.
, and
Rodgers
,
T.
, “
2022. “Integrated Computational Materials Engineering With Monotonic Gaussian Processes
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
86212
,
American Society of Mechanical Engineers
, p.
V002T02A038
.
13.
Ravi
,
S. K.
,
Dong
,
P.
, and
Wei
,
Z.
,
2022
, “
Data-Driven Modeling of Multiaxial Fatigue in Frequency Domain
,”
Mar. Struct.
,
84
, p.
103201
.
14.
Pei
,
X.
,
Ravi
,
S. K.
,
Dong
,
P.
,
Li
,
X.
, and
Zhou
,
X.
,
2022
, “
A Multi-Axial Vibration Fatigue Evaluation Procedure for Welded Structures in Frequency Domain
,”
Mech. Syst. Signal Process
,
167
, p.
108516
.
15.
Roy
,
I.
,
Roychowdhury
,
S.
,
Feng
,
B.
,
Ravi
,
S. K.
,
Ghosh
,
S.
,
Umretiya
,
R.
,
Rebak
,
R. B.
,
Ruscitto
,
D. M.
,
Gupta
,
V.
, and
Hoffman
,
A.
,
2023
, “
Data-Driven Predictive Modeling of Fecral Oxidation
,”
Mater. Lett. X
,
17
, p.
100183
.
16.
Ravi
,
S. K.
,
Bhaduri
,
A.
,
Amer
,
A.
,
Ghosh
,
S.
,
Wang
,
L.
,
Hoffman
,
A.
,
Umretiya
,
R.
,
Roy
,
I.
,
Rebak
,
R.
,
Dheeradhada
,
V. S.
, et al
, “
On Uncertainty Quantification in Materials Modeling and Discovery: Applications of Ge's BHM and IDACE
,”
AIAA SCITECH 2023 Forum
.
17.
Roy
,
I.
,
Abouelella
,
H.
,
Umretiya
,
R. V.
,
Roychowdhury
,
S.
,
Feng
,
B.
,
Ravi
,
S. K.
,
Ghosh
,
S.
,
Rebak
,
R. B.
,
Ruscitto
,
D. M.
,
Gupta
,
V.
, et al
,
2023
, “
Optimizing Chemistry for Designing Oxidation Resistant Fecral Alloys
,”
MRS Adv.
,
8
(
1
), pp.
21
26
.
18.
Ravi
,
S. K.
,
Roy
,
I.
,
Roychowdhury
,
S.
,
Feng
,
B.
,
Ghosh
,
S.
,
Reynolds
,
C.
,
Umretiya
,
R. V.
,
Rebak
,
R. B.
, and
Hoffman
,
A. K.
,
2023
, “
Elucidating Precipitation in Fecral Alloys Through Explainable AI: A Case Study
,”
Comput. Mater. Sci.
,
230
, p.
112440
.
19.
Roy
,
I.
,
Feng
,
B.
,
Roychowdhury
,
S.
,
Ravi
,
S. K.
,
Umretiya
,
R. V.
,
Reynolds
,
C.
,
Ghosh
,
S.
,
Rebak
,
R. B.
, and
Hoffman
,
A.
,
2023
, “
Understanding Oxidation of FeCr-Al Alloys Through Explainable Artificial Intelligence
,”
MRS Commun.
,
13
(
1
), pp.
1
7
.
20.
Williams
,
C. K.
,
1998
, “Prediction With Gaussian Processes: From Linear Regression to Linear Prediction and Beyond,”
Learning in Graphical Models
,
Springer
,
New York
, pp.
599
621
.
21.
Dering
,
M. L.
, and
Tucker
,
C. S.
,
2017
, “
A Convolutional Neural Network Model for Predicting a Product’s Function, Given Its Form
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111408
.
22.
Williams
,
G.
,
Meisel
,
N. A.
,
Simpson
,
T. W.
, and
McComb
,
C.
,
2019
, “
Design Repository Effectiveness for 3D Convolutional Neural Networks: Application to Additive Manufacturing
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111701
.
23.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2021
, “
Topologygan: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031715
.
24.
Wang
,
Z.
, and
Rosen
,
D.
,
2023
, “
Manufacturing Process Classification Based on Distance Rotationally Invariant Convolutions
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
5
), p.
051004
.
25.
Nie
,
Z.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2020
, “
Stress Field Prediction in Cantilevered Structures Using Convolutional Neural Networks
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011002
.
26.
Sofi
,
A. R.
, and
Ravani
,
B.
,
2023
, “
Sub-Second Prediction of the Heatmap of Powder-Beds in Additive Manufacturing Using Deep Encoder–Decoder Convolutional Neural Networks
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
2
), p.
021008
.
27.
Xu
,
H.
,
Nie
,
Z.
,
Xu
,
Q.
,
Li
,
Y.
,
Xie
,
F.
, and
Liu
,
X.-J.
,
2023
, “
Supermeshing: Boosting the Mesh Density of Stress Field in Plane-Strain Problems Using Deep Learning Method
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
034501
.
28.
Wong
,
V. W. H.
,
Ferguson
,
M.
,
Law
,
K. H.
,
Lee
,
Y. T. T.
, and
Witherell
,
P.
,
2022
, “
Segmentation of Additive Manufacturing Defects Using U-Net
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
3
), p.
031005
.
29.
Bhaduri
,
A.
,
Gupta
,
A.
, and
Graham-Brady
,
L.
,
2022
, “
Stress Field Prediction in Fiber-Reinforced Composite Materials Using a Deep Learning Approach
,”
Composites, Part B
,
238
, p.
109879
.
30.
Ma
,
S.
,
Tang
,
Q.
,
Liu
,
Y.
, and
Feng
,
Q.
,
2022
, “
Prediction of Mechanical Properties of Three-Dimensional Printed Lattice Structures Through Machine Learning
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
3
), p.
031008
.
31.
Xu
,
X.
,
Wu
,
Q.
,
Li
,
X.
, and
Huang
,
B.
,
2020
, “
Dilated Convolution Neural Network for Remaining Useful Life Prediction
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021004
.
32.
Gupta
,
A.
,
Bhaduri
,
A.
, and
Graham-Brady
,
L.
,
2023
, “
Accelerated Multiscale Mechanics Modeling in a Deep Learning Framework
,”
Mech. Mater.
,
184
, p.
104709
.
33.
Bhaduri
,
A.
, and
Graham-Brady
,
L.
,
2018
, “
An Efficient Adaptive Sparse Grid Collocation Method Through Derivative Estimation
,”
Probabilistic Eng. Mech.
,
51
, pp.
11
22
.
34.
Bhaduri
,
A.
,
Gardner
,
J.
,
Abrams
,
C. F.
, and
GrahamBrady
,
L.
,
2020
, “
Free Energy Calculation Using Space Filled Design and Weighted Reconstruction: A Modified Single Sweep Approach
,”
Mol. Simul.
,
46
(
3
), pp.
193
206
.
35.
Bhaduri
,
A.
,
Brandyberry
,
D.
,
Shields
,
M. D.
,
Geubelle
,
P.
, and
Graham-Brady
,
L.
,
2020
, “
On the Usefulness of Gradient Information in Surrogate Modeling: Application to Uncertainty Propagation in Composite Material Models
,”
Probabilistic Eng. Mech.
,
60
, p.
103024
.
36.
Bhaduri
,
A.
,
Meyer
,
C. S.
,
Gillespie Jr
,
J. W.
,
Haque
,
B. Z.
,
Shields
,
M. D.
, and
Graham-Brady
,
L.
,
2021
, “
Probabilistic Modeling of Discrete Structural Response With Application to Composite Plate Penetration Models
,”
J. Eng. Mech.
,
147
(
11
), p.
04021087
.
37.
Hombal
,
V.
, and
Mahadevan
,
S.
,
2013
, “
Surrogate Modeling of 3D Crack Growth
,”
Int. J. Fatigue
,
47
, pp.
90
99
.
38.
Tripathy
,
R.
,
Bilionis
,
I.
, and
Gonzalez
,
M.
,
2016
, “
Gaussian Processes With Built-In Dimensionality Reduction: Applications to High-Dimensional Uncertainty Propagation
,”
J. Comput. Phys.
,
321
, pp.
191
223
.
39.
Soize
,
C.
, and
Ghanem
,
R.
,
2022
, “
Probabilistic Learning on Manifolds (PLOM) With Partition
,”
Int. J. Numer. Methods Eng.
,
123
(
1
), pp.
268
290
.
40.
Bigoni
,
D.
,
Marzouk
,
Y.
,
Prieur
,
C.
, and
Zahm
,
O.
,
2021
, “Nonlinear Dimension Reduction for Surrogate Modeling Using Gradient Information,” arXiv, 2102, p.
10351
.
41.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
.
42.
Murphy
,
K. P.
,
2022
,
Probabilistic Machine Learning: An Introduction
,
MIT Press
.
43.
Tishby
,
N.
, and
Zaslavsky
,
N.
,
2015
, “
Deep Learning and the Information Bottleneck Principle
,”
2015 IEEE Information Theory Workshop (ITW)
,
IEEE
, pp.
1
5
.
44.
Alemi
,
A. A.
,
Fischer
,
I.
,
Dillon
,
J. V.
, and
Murphy
,
K.
,
2016
, “Deep Variational Information Bottleneck,” arXiv, 1612.00410.
45.
Kolchinsky
,
A.
,
Tracey
,
B. D.
, and
Wolpert
,
D. H.
,
2019
, “
Nonlinear Information Bottleneck
,”
Entropy
,
21
(
12
), pp.
1181
.
46.
Zhai
,
P.
, and
Zhang
,
S.
,
2022
, “
Adversarial Information Bottleneck
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
35
(
1),
pp.
221
230
.
47.
Samaddar
,
A.
,
Madireddy
,
S.
,
Balaprakash
,
P.
,
Maiti
,
T.
,
de los Campos
,
G.
, and
Fischer
,
I.
,
2023
, “Sparsityinducing Categorical Prior Improves Robustness of the Information Bottleneck,”
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, Vol. 206 of Proceedings of Machine Learning Research, PMLR, F. Ruiz, J. Dy, and J.-W. van de Meent, eds.
, pp.
10207
10222
.
48.
Luan
,
L.
,
Ramachandra
,
N.
,
Ravi
,
S. K.
,
Bhaduri
,
A.
,
Pandita
,
P.
,
Balaprakash
,
P.
,
Anitescu
,
M.
,
Sun
,
C.
, and
Wang
,
L.
,
2023
, “
Scalable Probabilistic Modeling and Machine Learning With Dimensionality Reduction for Expensive High-Dimensional Problems
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
87295
,
American Society of Mechanical Engineers
, p.
V002T02A011
.
49.
Bhaduri
,
A.
,
Ramachandra
,
N.
,
Krishnan Ravi
,
S.
,
Luan
,
L.
,
Pandita
,
P.
,
Balaprakash
,
P.
,
Anitescu
,
M.
,
Sun
,
C.
, and
Wang
,
L.
,
2024
, “
Efficient Mapping Between Void Shapes and Stress Fields Using Deep Convolutional Neural Networks With Sparse Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
5
), pp.
051008
.
50.
Balaprakash
,
P.
,
Salim
,
M.
,
Uram
,
T. D.
,
Vishwanath
,
V.
, and
Wild
,
S. M.
,
2018
, “
Deephyper: Asynchronous Hyperparameter Search for Deep Neural Networks
,”
2018 IEEE 25th International Conference on High Performance Computing (HiPC)
,
IEEE
, pp.
42
51
.
51.
Yang
,
Y.
,
Mandt
,
S.
,
Theis
,
L.
, et al
,
2023
, “
An Introduction to Neural Data Compression
,”
Found. Trends® Comput. Graph. Vis.
,
15
(
2
), pp.
113
200
.
52.
Goldfeld
,
Z.
, and
Polyanskiy
,
Y.
,
2020
, “
The Information Bottleneck Problem and Its Applications in Machine Learning
,”
IEEE J. Sel. Areas Inf. Theory
,
1
(
1
), pp.
19
38
.
53.
Alemi
,
A. A.
,
Morningstar
,
W. R.
,
Poole
,
B.
,
Fischer
,
I.
, and
Dillon
,
J. V.
,
2020
, “Vib Is Half Bayes,” arXiv, 2011.08711.
54.
Luan
,
L.
,
Ravi
,
S. K.
,
Bhaduri
,
A.
,
Pandita
,
P.
,
Wang
,
L.
,
Ramachandra
,
N.
, and
Madireddy
,
S.
,
2024
, “
Highdimensional Surrogate Modeling for Image Data With Nonlinear Dimension Reduction
,”
AIAA SCITECH 2024 Forum
, p.
0388
.
55.
Abdi
,
H.
, and
Williams
,
L. J.
,
2010
, “
Principal Component Analysis
,”
Wiley Interdisc. Rev. Comput. Stat.
,
2
(
4
), pp.
433
459
.
56.
Ghosh
,
S.
,
Pandita
,
P.
,
Atkinson
,
S.
,
Subber
,
W.
,
Zhang
,
Y.
,
Kumar
,
N. C.
,
Chakrabarti
,
S.
, and
Wang
,
L.
,
2020
, “
Advances in Bayesian Probabilistic Modeling for Industrial Applications
,”
ASCE ASME J. Risk Uncert. Eng. Syst. Part B: Mech. Eng.
,
6
, p.
3
.
57.
Sundararajan
,
M.
,
Taly
,
A.
, and
Yan
,
Q.
,
2017
, “
Axiomatic Attribution for Deep Networks
,”
International Conference on Machine Learning
,
PMLR
, pp.
3319
3328
.
You do not currently have access to this content.