Abstract

Current high-performance prosthetic feet work well for many users, but the low resolution of size and stiffness categories may limit walking performance for certain users. A line of prosthetic feet with a high resolution of sizes and stiffnesses, designed through amputee-specific personalization, could provide clinical and economic value. The lower leg trajectory error (LLTE) design framework facilitates the design of high-performance, amputee-specific prosthetic feet; however, previous foot prototypes were not designed to satisfy the economic, mechanical, and aesthetic requirements for commercial adoption. The aims of this work were to understand how a personalized, affordable prosthetic foot can align with the clinical-commercial ecosystem, innovate a viable future product, and inform other prosthesis designers of considerations required to connect innovation to real-world implementation. We evaluated needs by identifying how products, capital, and services flow between stakeholders, and we elucidated design requirements for a personalized prosthetic foot that can be manufactured, distributed, and clinically provided. Based on material properties and manufacturing process capabilities, computer numerically controlled (CNC) machining of Nylon 6/6 satisfies these requirements. We present a novel parametric foot architecture that can be CNC machined, fits within a commercial foot shell, and can be designed for individual users’ body characteristics and activity levels. Prototypes made using the new foot design behaved as anticipated (1–12% error in modeled displacement), satisfied industry-standard strength (ISO 10328) and mechanical performance (AOPA dynamic heel/keel) requirements, and elicited positive feedback from both amputees and prosthetists.

References

1.
Fillauer LLC
,
2020
,
Lower Extremity Prosthetics Product Catalog
,
Fillauer LLC
,
Chattanooga, TN
.
2.
Freedom Innovations
,
2015
,
Lower Limb Prosthetic Solutions Product Catalog
,
Proteor USA
,
Irvine, CA
.
3.
Össur
,
2016
,
Prosthetic Solutions Catalogue
,
Össur
,
Reykjavík, Iceland
.
4.
Ottobock
,
2015
,
Prosthetics—Lower Limbs
,
Ottobock
,
Duderstadt, Germany
.
5.
Endolite North America
,
2016
,
Catalog 2016/2017—Lower Limb Prosthetic Product Range
,
Endolite North America
,
Miamisberg, Ohio
.
6.
Womac
,
N. D.
,
Neptune
,
R. R.
, and
Klute
,
G. K.
,
2019
, “
Stiffness and Energy Storage Characteristics of Energy Storage and Return Prosthetic Feet
,”
Prosthetics Orthotics Int.
,
43
(
3
), pp.
266
275
.
7.
Peterson
,
H. V.
,
2021
, “
Design of a Novel Mechatronic System to Test Prosthetic Feet Under Specific Walking Activity Loads and Evaluate their Lower Leg Trajectory Error
,” S.M. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
8.
Shepherd
,
M. K.
,
Azocar
,
A. F.
,
Major
,
M. J.
, and
Rouse
,
E. J.
,
2018
, “
Amputee Perception of Prosthetic Ankle Stiffness During Locomotion
,”
J. NeuroEng. Rehabil.
,
15
(
1
), p.
99
.
9.
Shepherd
,
M. K.
, and
Rouse
,
E. J.
,
2020
, “
Comparing Preference of Ankle-Foot Stiffness in Below-Knee Amputees and Prosthetists
,”
Sci. Rep.
,
10
(
1
), p.
16067
.
10.
Gailey
,
R.
,
Allen
,
K.
,
Castles
,
J.
,
Kucharik
,
J.
, and
Roeder
,
M.
,
2008
, “
Review of Secondary Physical Conditions Associated With Lower-Limb Amputation and Long-Term Prosthesis Use
,”
J. Rehabil. Res. Develop.
,
45
(
1
), pp.
15
30
.
11.
Waters
,
R. L.
, and
Mulroy
,
S.
,
1999
, “
The Energy Expenditure of Normal and Pathologic Gait
,”
Gait Posture
,
9
(
3
), pp.
207
231
.
12.
Zidarov
,
D.
,
Swaine
,
B.
, and
Gauthier-Gagnon
,
C.
,
2009
, “
Quality of Life of Persons With Lower-Limb Amputation During Rehabilitation and at 3-Month Follow-Up
,”
Arch. Phys. Med. Rehabil.
,
90
(
4
), pp.
634
645
.
13.
Clites
,
T. R.
,
Shepherd
,
M. K.
,
Ingraham
,
K. A.
,
Wontorcik
,
L.
, and
Rouse
,
E. J.
,
2021
, “
Understanding Patient Preference in Prosthetic Ankle Stiffness
,”
J. NeuroEng. Rehabil.
,
18
(
1
), p.
128
.
14.
Randolph
,
B. J.
,
Nelson
,
L. M.
, and
Highsmith
,
M. J.
,
2016
, “
A Review of Unique Considerations for Female Veterans With Amputation
,”
Military Med.
,
18
(
4
), pp.
66
68
.
15.
Kirk
,
M. S.
,
2017
,
Military Construction, Veterans Affairs, and Related Agencies Appropriations Act
, Pub. L. No. S. 2806, https://www.congress.gov/bill/114th-congress/senate-bill/2806/text
16.
Major
,
M. J.
,
Hansen
,
A. H.
, and
Esposito
,
E. R.
,
2021
, “
Focusing Research Efforts on the Unique Needs of Women Prosthesis Users
,”
J. Prosthetics Orthotics
,
34
(
1
), pp.
e37
e43
.
17.
Major
,
M. J.
,
Quinlan
,
J.
,
Hansen
,
A. H.
, and
Russell Esposito
,
E.
,
2022
, “
Effects of Women’s Footwear on the Mechanical Function of Heel-Height Accommodating Prosthetic Feet
,”
PLoS. One.
,
17
(
1
), p.
e0262910
.
18.
Major
,
M. J.
, and
Fey
,
N. P.
,
2017
, “
Considering Passive Mechanical Properties and Patient User Motor Performance in Lower Limb Prosthesis Design Optimization to Enhance Rehabilitation Outcomes
,”
Phys. Therapy Rev.
,
22
(
3–4
), pp.
202
216
.
19.
Price
,
M. A.
,
Beckerle
,
P.
, and
Sup
,
F. C.
,
2019
, “
Design Optimization in Lower Limb Prostheses: A Review
,”
IEEE Trans. Neural Syst. Rehabil. Eng. : Public. IEEE Eng. Med. Biol. Soc.
,
27
(
8
), pp.
1574
1588
.
20.
Hafner
,
B. J.
,
2005
, “
Clinical Prescription and Use of Prosthetic Foot and Ankle Mechanisms: A Review of the Literature
,”
J. Prosthet. Orthot.
,
17
(
4
), pp.
S5
S11
.
21.
Hafner
,
B. J.
,
Sanders
,
J. E.
,
Czerniecki
,
J. M.
, and
Fergason
,
J.
,
2002
, “
Energy Storage and Return Prostheses: Does Subject Perception Correlate With Biomechanical Analysis?
Clinical Biomech.
,
17
(
5
), pp.
325
344
.
22.
Neumann
,
E. S.
,
2009
, “
State-of-the-Science Review of Transtibial Prosthesis Alignment Perturbation
,”
J. Prosthet. Orthot.
,
21
(
4
), pp.
175
193
.
23.
Wurdeman
,
S. R.
,
Stevens
,
P. M.
, and
Campbell
,
J. H.
,
2018
, “
Mobility Analysis of AmpuTees (MAAT I): Quality of Life and Satisfaction are Strongly Related to Mobility for Patients With a Lower Limb Prosthesis
,”
Prosthet. Orthot. Int.
,
42
(
5
), pp.
498
503
.
24.
Hafner
,
B. J.
,
Gaunaurd
,
I. A.
,
Morgan
,
S. J.
,
Amtmann
,
D.
,
Salem
,
R.
, and
Gailey
,
R. S.
,
2017
, “
Construct Validity of the Prosthetic Limb Users Survey of Mobility (PLUS-M) in Adults With Lower Limb Amputation
,”
Arch. Phys. Med. Rehabil.
,
98
(
2
), pp.
277
285
.
25.
Singh
,
R.
,
Hunter
,
J.
,
Philip
,
A.
, and
Tyson
,
S.
,
2008
, “
Gender Differences in Amputation Outcome
,”
Disability Rehabil.
,
30
(
2
), pp.
122
125
.
26.
Powers
,
C. M.
,
Torburn
,
L.
,
Perry
,
J.
, and
Ayyappa
,
E.
,
1994
, “
Influence of Prosthetic Foot Design on Sound Limb Loading in Adults With Unilateral Below-Knee Amputations
,”
Arch. Phys. Med. Rehabil.
,
75
(
7
), pp.
825
829
.
27.
Lemaire
,
E. D.
, and
Fisher
,
F. R.
,
1994
, “
Osteoarthritis and Elderly Amputee Gait
,”
Arch. Phys. Med. Rehabil.
,
75
(
10
), pp.
1094
1099
.
28.
Dobsan DaVanzo and Associates LLC
,
2013
,
Retrospective Cohort Study of the Economic Value of Orthotic and Prosthetic Services Among Medicare Beneficiaries, Report No. 11-114
.
29.
Emanuel
,
E. J.
,
2018
, “
The Real Cost of the US Health Care System
,”
JAMA
,
319
(
10
), pp.
983
985
.
30.
Ginsburg
,
P. B.
,
2008
, “
High and Rising Health Care Costs: Demystifying U.S. Health Care Spending
,” Technical Report, Report No. 16,
Robert Wood Johnson Foundation
,
Princeton, NJ
.
31.
Organisation for Economic Co-operation and Development
,
2021
,
Health at a Glance 2021: OECD Indicators
,
OECD Publishing
,
Paris, France
. https://www.oecd.org/health/health-at-a-glance.htm
32.
Tikkanen
,
R.
, and
Abrams
,
M. K.
,
2019
,
U.S. Health Care From a Global Perspective, 2019: Higher Spending, Worse Outcomes?
The Commonwealth Fund
,
New York City
. https://www.commonwealthfund.org/publications/issue-briefs/2020/jan/us-health-care-global-perspective-2019
33.
Highsmith
,
M. J.
,
Kahle
,
J. T.
,
Lewandowski
,
A. L.
,
Klenow
,
T. D.
,
Orriola
,
J. J.
,
Miro
,
R. M.
,
Hill
,
O. T.
,
Raschke
,
S. U.
,
Orendurff
,
M. S.
,
Highsmith
,
J. T.
, and
Sutton
,
B. S.
,
2016
, “
Economic Evaluations of Interventions for Transtibial Amputees
,”
Technol. Innovation
,
18
(
2–3
), pp.
85
98
.
34.
Stevens
,
P. M.
,
Rheinstein
,
J.
, and
Wurdeman
,
S. R.
,
2018
, “
Prosthetic Foot Selection for Individuals With Lower-Limb Amputation: A Clinical Practice Guideline
,”
J. Prosthet. Orthot.
,
30
(
4
), pp.
175
180
.
35.
Major
,
M. J.
,
Twiste
,
M.
,
Kenney
,
L. P.
, and
Howard
,
D.
,
2011
, “
Amputee Independent Prosthesis Properties—A New Model for Description and Measurement
,”
J. Biomech.
,
44
(
14
), pp.
2572
2575
.
36.
Olesnavage
,
K. M.
, and
Winter
,
A. G.
,
2018
, “
A Novel Framework for Quantitatively Connecting the Mechanical Design of Passive Prosthetic Feet to Lower Leg Trajectory
,”
IEEE. Trans. Neural. Syst. Rehabil. Eng.
,
26
(
8
), pp.
1544
1555
.
37.
Olesnavage
,
K. M.
,
Prost
,
V.
,
Johnson
,
W. B.
, and
Amos Winter
,
V. G.
,
2018
, “
Passive Prosthetic Foot Shape and Size Optimization Using Lower Leg Trajectory Error
,”
ASME J. Mech. Des.
,
140
(
10
), p. 102302.
38.
Prost
,
V.
,
Johnson
,
W. B.
,
Kent
,
J. A.
,
Major
,
M. J.
, and
Winter
,
A. G.
,
2022
, “
Biomechanical Evaluation Over Level Ground Walking of User-Specific Prosthetic Feet Designed Using the Lower Leg Trajectory Error Framework
,”
Sci. Rep.
,
12
(
1
), pp.
1
15
.
39.
Prost
,
V.
,
Johnson
,
W. B.
,
Kent
,
J. A.
,
Major
,
M. J.
, and
Amos
,
G. W. V.
,
2023
, “
Systematic Assessment of Prosthesis Stiffness on User Biomechanics Using the Lower Leg Trajectory Error Framework and Its Implication for the Design and Evaluation of Ankle-Foot Prostheses
,”
J. Biomech. Eng.
,
145
(
4
), pp.
1
16
.
40.
Prost
,
V.
,
Peterson
,
H. V.
, and
Winter
,
A. G.
,
2021
, “
Multi-Keel Passive Prosthetic Foot Design Optimization Using the Lower Leg Trajectory Error Framework
,”
ASME 2021 International Design Engineering in Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
,
August 2021
, pp.
1
14
.
41.
International Organization for Standardization
,
2016
,
ISO 10328:2016: Prosthetics: Structural testing of lower-limb prostheses: Requirements and test methods
,
International Organization for Standardization
,
Geneva, Switzerland
.
42.
Johnson
,
W. B.
,
Prost
,
V.
,
Mukul
,
P.
, and
Winter
,
A. G.
,
2023
, “
Design and Evaluation of a High-Performance, Low-Cost Prosthetic Foot for Developing Countries
,”
ASME J. Med. Dev.
,
17
(
1
), p.
011003
.
43.
Prost
,
V.
,
Olesnavage
,
K. M.
,
Johnson
,
W. B.
,
Major
,
M. J.
, and
Winter
,
A. G.
,
2018
, “
Design and Testing of a Prosthetic Foot With Interchangeable Custom Springs for Evaluating Lower Leg Trajectory Error, An Optimization Metric for Prosthetic Feet
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021010
.
44.
Olesnavage
,
K. M.
,
Prost
,
V.
,
Johnson
,
W. B.
,
Major
,
M. J.
, and
Winter
,
A. G.
,
2021
, “
Experimental Demonstration of the Lower Leg Trajectory Error Framework Using Physiological Data as Inputs
,”
ASME J. Biomech. Eng.
,
143
(
3
), p.
031003
.
45.
Major
,
M. J.
,
Scham
,
J.
, and
Orendurff
,
M.
,
2018
, “
The Effects of Common Footwear on Stance-Phase Mechanical Properties of the Prosthetic Foot-Shoe System
,”
Prosthet. Orthot. Int.
,
42
(
2
), pp.
198
207
.
46.
Hanger Inc.
,
2022
,
Investor Presentation: March 2022
,
Hanger Inc.
,
Austin, TX
.
47.
Stark
,
G.
,
2005
, “
Perspectives on How and Why Feet are Prescribed
,”
J. Prosthet. Orthot.
,
17
(
Suppl. 4
), pp.
18
22
.
48.
Schaffalitzky
,
E.
,
Gallagher
,
P.
,
MacLachlan
,
M.
, and
Wegener
,
S. T.
,
2012
, “
Developing Consensus on Important Factors Associated With Lower Limb Prosthetic Prescription and Use
,”
Disability Rehabil.
,
34
(
24
), pp.
2085
2094
.
49.
Schaffalitzky
,
E.
,
Ni Mhurchadha
,
S.
,
Gallagher
,
P.
,
Hofkamp
,
S.
,
MacLachlan
,
M.
, and
Wegener
,
S. T.
,
2009
, “
Identifying the Values and Preferences of Prosthetic Users: A Case Study Series Using the Repertory Grid Technique
,”
Prosthet. Orthot. Int.
,
33
(
2
), pp.
157
166
.
50.
Baars
,
E. C.
,
Schrier
,
E.
,
DIjkstra
,
P. U.
, and
Geertzen
,
J. H.
,
2018
, “
Prosthesis Satisfaction in Lower Limb Amputees: A Systematic Review of Associated Factors and Questionnaires
,”
Medicine
,
97
(
39
), p.
e12296
.
51.
Ritchie
,
S.
,
Wiggins
,
S.
, and
Sanford
,
A.
,
2011
, “
Perceptions of Cosmesis and Function in Adults With Upper Limb Prostheses: A Systematic Literature Review
,”
Prosthet. Orthot. Int.
,
35
(
4
), pp.
332
341
.
52.
Bekrater-Bodmann
,
R.
,
2021
, “
Factors Associated With Prosthesis Embodiment and Its Importance for Prosthetic Satisfaction in Lower Limb Amputees
,”
Front. Neurorobot.
,
14
, p.
604376
.
53.
Harness
,
N.
, and
Pinzur
,
M.
,
2001
, “
Health Related Quality of Life in Patients With Dysvascular Transtibial Amputation
,”
Clin. Orthop. Relat. Res.
,
383
, pp.
204
207
.
54.
Legro
,
M. W.
,
Reiber
,
G. D.
,
Smith
,
D. G.
,
Del Aguila
,
M.
,
Larsen
,
J.
, and
Boone
,
D.
,
1998
, “
Prosthesis Evaluation Questionnaire for Persons With Lower Limb Amputations: Assessing Prosthesis-Related Quality of Life
,”
Arch. Phys. Med. Rehabil.
,
79
(
8
), pp.
931
938
.
55.
Jonkergouw
,
N.
,
Prins
,
M. R.
,
Buis
,
A. W.
, and
Van Der Wurff
,
P.
,
2016
, “
The Effect of Alignment Changes on Unilateral Transtibial Amputee’s Gait: A Systematic Review
,”
PLoS. One.
,
11
(
12
), pp.
1
18
.
56.
Borrenpohl
,
D.
,
Kaluf
,
B.
, and
Major
,
M. J.
,
2016
, “
Survey of U.S. Practitioners on the Validity of the Medicare Functional Classification Level System and Utility of Clinical Outcome Measures for Aiding K-Level Assignment
,”
Arch. Phys. Med. Rehabil.
,
97
(
7
), pp.
1053
1063
.
57.
American Orthotic and Prosthetic Association
,
2010
,
AOPA Prosthetic Foot Project Report
,
American Orthotic and Prosthetic Association
,
Frederick, MD
.
58.
Centers for Disease Control
,
2018
,
National Health and Nutrition Examination Survey
,
Centers for Disease Control
,
Atlanta, GA
. https://wwwn.cdc.gov/nchs/nhanes/Default.aspx
59.
Prost
,
V.
,
2021
, “Development and Validation of a Passive Prosthetic Foot Design Framework based on Lower Leg Dynamics,” PhD thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
60.
International Organization for Standardization
,
2016
,
ISO 22675:2016: Prosthetics: Testing of ankle-foot devices and foot units: Requirements and test methods
,
International Organization for Standardization
,
Geneva, Switzerland
. https://www.iso.org/standard/70203.html
61.
Centers for Medicare & Medicaid Services
,
2021
,
Durable Medical Equipment, Prosthetics, Orthotics & Use Supplies (DMEPOS) Fee Schedule Public Use File
,
Centers for Medicare & Medicaid Services
,
Baltimore, MD
. https://www.cms.gov/medicaremedicare-fee-service-paymentdmeposfeescheddmepos-fee-schedule/dme21-d
62.
Ashby
,
M. F.
,
2000
,
Materials Selection in Mechanical Design
, 2nd ed.,
Butterworth-Heineman
,
Oxford, UK
.
63.
Folinus
,
C. M.
,
2022
, “
Design and Mechanical Validation of Commercially Viable, Personalized Passive Prosthetic Feet
,” SM thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
64.
Advanced Laser Materials
,
2021
, “
Laser Sintering Material Catalog
,” Technical Report,
Advanced Laser Materials
,
Temple, TX
.
65.
Protolabs
,
2020
, “
Selective Laser Sintering PP Natural
,” Technical Report,
Protolabs
,
Maple Plain, MN
.
66.
Protolabs
,
2021
, “
Material Comparison Guide
,” Technical Report,
Protolabs
,
Maple Plain, MN
.
67.
Stratasys Direct
,
2017
, “
Selective Laser Sintering Materials
,” Technical Report,
Stratasys
,
Eden Prairie, MN
.
68.
Stratasys Direct
,
2017
, “
Materials for 3D Printing Parts With FDM
,” Technical Report,
Stratasys
,
Eden Prairie, MN
.
69.
Prodways Tech
,
2020
, “
3D Printing Polymer Powders
,” Technical Report,
Prodways Tech
,
Merrimack, NH
.
70.
Prodways Materials
,
2019
, “
Selective Laser Sintering Powders
,” Technical Report,
Prodways
,
Merrimack, NH
.
71.
EOS GmbH
,
2020
, “
EOS Material Data Center
,” Technical Report,
EOS GmbH
,
Munich
.
72.
3D Systems
,
2022
, “
Material Finder
,” Technical Report,
3D Systems
,
Rock Hill, SC
.
73.
Dickson
,
A. N.
,
Barry
,
J. N.
,
McDonnell
,
K. A.
, and
Dowling
,
D. P.
,
2017
, “
Fabrication of Continuous Carbon, Glass and Kevlar Fibre Reinforced Polymer Composites Using Additive Manufacturing
,”
Addit. Manuf.
,
16
, pp.
146
152
.
74.
Naranjo-Lozada
,
J.
,
Ahuett-Garza
,
H.
,
Orta-Castañón
,
P.
,
Verbeeten
,
W. M.
, and
Sáiz-González
,
D.
,
2019
, “
Tensile Properties and Failure Behavior of Chopped and Continuous Carbon Fiber Composites Produced by Additive Manufacturing
,”
Addit. Manuf.
,
26
, pp.
227
241
.
75.
Korkees
,
F.
,
Allenby
,
J.
, and
Dorrington
,
P.
,
2020
, “
3D Printing of Composites: Design Parameters and Flexural Performance
,”
Rapid. Prototyp. J.
,
26
(
4
), pp.
699
706
.
76.
Saeed
,
K.
,
McIlhagger
,
A.
,
Harkin-Jones
,
E.
,
Kelly
,
J.
, and
Archer
,
E.
,
2021
, “
Predication of the In-Plane Mechanical Properties of Continuous Carbon Fibre Reinforced 3D Printed Polymer Composites Using Classical Laminated-Plate Theory
,”
Composite Struct.
,
259
(
Nov.
), p.
113226
.
77.
Amaria
,
A.
,
Pasquali
,
F. M.
,
Armstron
,
J. N.
, and
Hall
,
J. F.
,
2020
, “
Rule of Mixtures Model to Determine the Elastic and Tensile Strength of 3D Printed Kevlar Reinforced Nylon: Theremal Gravimetric Analysis of Kevlar
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 17–19
.
78.
Zhang
,
Z.
,
Shi
,
J.
,
Yu
,
T.
,
Santomauro
,
A.
,
Gordon
,
A.
,
Gou
,
J.
, and
Wu
,
D.
,
2020
, “
Predicting Flexural Strength of Additively Manufactured Continuous Carbon Fiber- Reinforced Polymer Composites Using Machine Learning
,”
J. Comput. Inf. Sci. Eng.
,
20
(
6
), pp.
1
9
.
79.
Chacón
,
J. M.
,
Caminero
,
M. A.
,
Núñez
,
P. J.
,
García-Plaza
,
E.
,
García-Moreno
,
I.
, and
Reverte
,
J. M.
,
2019
, “
Additive Manufacturing of Continuous Fibre Reinforced Thermoplastic Composites Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties
,”
Compos. Sci. Technol.
,
181
.
80.
Pertuz
,
A.
,
Díaz-Cardona
,
S.
, and
Andrés González Estrada
,
O.
,
2020
, “
Static and Fatigue Behaviour of Continuous Fibre Reinforced Thermoplastic Composites Manufactured by Fused Deposition Modelling Technique
,”
Int. J. Fatigue.
,
130
.
81.
Molony
,
S.
,
Brooks
,
H.
, and
Tyas
,
D.
,
2017
, “
Tensile and Fatigue Failure of 3D Printed Parts With Continuous Fibre Reinforcement
,”
Int. J. Rapid Manuf.
,
6
(
3
), p.
97
.
82.
Dantas
,
F.
,
Couling
,
K.
, and
Gibbons
,
G. J.
,
2020
, “
Long-Fibre Reinforced Polymer Composites by 3D Printing: Influence of Nature of Reinforcement and Processing Parameters on Mechanical Performance
,”
Functional Composite Mater.
,
1
(
1
), pp.
1
12
.
83.
Son
,
Y. K.
,
1991
, “
A Cost Estimation Model for Advanced Manufacturing Systems
,”
Int. J. Prod. Res.
,
29
(
3
), pp.
441
452
.
84.
Hopkinson
,
N.
, and
Dickens
,
P.
,
2003
, “
Analysis of Rapid Manufacturing—Using Layer Manufacturing Processes for Production
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
217
(
1
), pp.
31
40
.
85.
Ruffo
,
M.
,
Tuck
,
C.
, and
Hague
,
R.
,
2006
, “
Cost Estimation for Rapid Manufacturing – Laser Sintering Production for Low to Medium Volumes
,”
Proc. Inst. Mech. Eng. B.
,
220
(
9
), pp.
1417
1427
.
86.
Thomas
,
D. S.
, and
Gilbert
,
S. W.
,
2015
, “Costs and Cost Effectiveness of Additive Manufacturing: A Literature Review and Discussion,”
National Institute of Standards and Technology
,
Gaithersburg, MD
, Report No. 1176.
87.
Baumers
,
M.
,
Dickens
,
P.
,
Tuck
,
C.
, and
Hague
,
R.
,
2016
, “
The Cost of Additive Manufacturing: Machine Productivity, Economies of Scale and Technology-Push
,”
Tech. Forecasting Social Change
,
102
, pp.
193
201
.
88.
Dewhurst
,
P.
, and
Boothroyd
,
G.
,
1988
, “
Early Cost Estimating in Product Design
,”
J. Manuf. Syst.
,
7
(
3
), pp.
183
191
.
89.
Jung
,
J. Y.
,
2002
, “
Manufacturing Cost Estimation for Machined Parts Based on Manufacturing Features
,”
J. Intell. Manuf.
,
13
(
4
), pp.
227
238
.
90.
Kadir
,
A. Z. A.
,
Yusof
,
Y.
, and
Wahab
,
M. S.
,
2020
, “
Additive Manufacturing Cost Estimation Models–a Classification Review
,”
Int. J. Adv. Manuf. Technol.
,
107
(
9–10
), pp.
4033
4053
.
91.
Polgar
,
K. C.
,
1996
, “Simplified Time Estimation for Basic Machining Operations,” PhD thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
92.
Šoškić
,
Z.
,
Monti
,
G. L.
,
Montanari
,
S.
,
Monti
,
M.
, and
Cardu
,
M.
,
2021
, “
Production Cost Model of the Multi-Jet-Fusion Technology
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
235
(
10
), pp.
1917
1929
.
93.
O’Connor
,
H. J.
,
Dickson
,
A. N.
, and
Dowling
,
D. P.
,
2018
, “
Evaluation of the Mechanical Performance of Polymer Parts Fabricated Using a Production Scale Multi Jet Fusion Printing Process
,”
Addit. Manuf.
,
22
, pp.
381
387
.
94.
Mukherjee
,
T.
,
Zhang
,
W.
, and
DebRoy
,
T.
,
2017
, “
An Improved Prediction of Residual Stresses and Distortion in Additive Manufacturing
,”
Comput. Mater. Sci.
,
126
, pp.
360
372
.
95.
International Organization for Standardization
,
1989
,
ISO 2768-1: General Tolerances: Part 1: Tolerances for Linear and Angular Dimensions Without Individual Tolerance Indications
,
International Organization for Standardization
,
Geneva, Switzerland
.
96.
Ernst
,
M.
,
Altenburg
,
B.
, and
Schmalz
,
T.
,
2020
, “
Characterizing Adaptations of Prosthetic Feet in the Frontal Plane
,”
Prosthet. Orthot. Int.
,
44
(
4
), pp.
225
233
.
97.
Altenburg
,
B.
,
Ernst
,
M.
,
Maciejasz
,
P.
,
Schmalz
,
T.
,
Braatz
,
F.
,
Gerke
,
H.
, and
Bellmann
,
M.
,
2021
, “
Effects of a Prosthetic Foot With Increased Coronal Adaptability on Cross-Slope Walking
,”
Canadian Prosthet. Orthot. J.
,
4
(
1
), p.
35206
.
98.
Zhou
,
H.
, and
Ting
,
K. L.
,
2006
, “
Shape and Size Synthesis of Compliant Mechanisms Using Wide Curve Theory
,”
J. Mech. Des.
,
128
(
3
), pp.
551
558
.
99.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches: A Comparative Review
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
.
100.
Xu
,
D.
, and
Ananthasuresh
,
G. K.
,
2003
, “
Freeform Skeletal Shape Optimization of Compliant Mechanisms
,”
J. Mech. Des.
,
125
(
2
), pp.
253
261
.
101.
Yoely
,
Y. M.
,
Hanniel
,
I.
, and
Amir
,
O.
,
2020
, “
Structural Optimization with Explicit Geometric Constraints Using a B-Spline Representation
,”
Mech. Design Struct. Mach.
,
50
(
11
), pp.
3966
3997
.
102.
Chang
,
K. H.
, and
Tang
,
P. S.
,
2001
, “
Integration of Design and Manufacturing for Structural Shape Optimization
,”
Adv. Eng. Softw.
,
32
(
7
), pp.
555
567
.
103.
McGuire
,
W.
,
Gallagher
,
R. H.
, and
Ziemian
,
R. D.
,
2014
,
Matrix Structural Analysis
, 2nd ed.,
John Wiley and Sons
,
New York City
.
104.
Eng
,
J. J.
, and
Winter
,
D. A.
,
1995
, “
Kinetic Analysis of the Lower Limbs During Walking: What Information Can Be Gained From a Three-Dimensional Model
?”
J. Biomech.
,
28
(
6
), pp.
753
758
.
105.
Markforged Inc.
,
2019
, “
Product Specifications: Mark Two
.”
106.
Haas Automation Inc.
,
2022
, “
Quote, UMC-500
.”
You do not currently have access to this content.