Abstract

In engineering disciplines, leveraging generative language models requires using specialized datasets for training or fine-tuning the preexisting models. Compiling these domain-specific datasets is a complex endeavor, demanding significant human effort and resources. To address the problem of domain-specific dataset scarcity, this study investigates the potential of generative large language models (LLMs) in creating synthetic domain-specific textual datasets for engineering design domains. By harnessing the advanced capabilities of LLMs, such as GPT-4, a systematic methodology was developed to create high-fidelity datasets using designed prompts, evaluated against a manually labeled benchmark dataset through various computational measurements without human intervention. Findings suggest that well-designed prompts can significantly enhance the quality of domain-specific synthetic datasets with reduced manual effort. The research highlights the importance of prompt design in eliciting precise, domain-relevant information and discusses the balance between dataset robustness and richness. It is demonstrated that a language model trained on synthetic datasets can achieve a level of performance comparable to that of human-labeled, domain-specific datasets in terms of quality, offering a strategic solution to the limitations imposed by dataset shortages in engineering domains. The implications for design thinking processes are particularly noteworthy, with the potential to assist designers through GPT-4's structured reasoning capabilities. This work presents a complete guide for domain-specific dataset generation, automated evaluation metrics, and insights into the interplay between data robustness and comprehensiveness.

References

1.
Qiu
,
Y.
, and
Jin
,
Y.
,
2022
, “
Engineering Document Summarization: A Bidirectional Language Model-Based Approach
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
6
), p.
061004
.
2.
Qiu
,
Y.
, and
Jin
,
Y.
,
2023
, “
Document Understanding-Based Design Support: Language Model Based Design Knowledge Extraction
,”
ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
, Paper No. IDETC2023–116746.
3.
OpenAI
,
2023
, “GPT-4 Technical Report.”
4.
Tong
,
Y.
,
Liang
,
Y.
,
Liu
,
Y.
,
Spasić
,
I.
, and
Hicks
,
Y.
,
2022
, “
Understanding Context of Use From Online Customer Reviews Using BERT
,”
2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)
,
Mexico City, Mexico
,
Aug. 20–24
, IEEE, pp.
1820
1825
.
5.
Akay
,
H.
, and
Kim
,
S.
,
2021
, “
Extracting Functional Requirements From Design Documentation Using Machine Learning
,”
Procedia CIRP
,
100
(
1
), pp.
31
36
.
6.
Kang
,
D. M.
,
Lee
,
C. C.
,
Lee
,
S.
, and
Lee
,
W.
,
2020
, “
Patent Prior art Search Using Deep Learning Language Model
,”
Proceedings of the 24th Symposium on International Database Engineering & Applications
,
Seoul, South Korea
,
Aug. 12–14
, pp.
1
5
.
7.
Lee
,
J.-S.
, and
Hsiang
,
J.
,
2020
, “
Patent Classification by Fine-Tuning BERT Language Model
,”
World Pat. Inf.
,
61
(
1
), p.
101965
.
8.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
9.
Azizi
,
S.
,
Kornblith
,
S.
,
Saharia
,
C.
,
Norouzi
,
M.
, and
Fleet
,
D. J.
,
2023
, “
Synthetic Data from Diffusion Models Improves Imagenet Classification
,”
arXiv Preprint arXiv:2304.08466
. https://arxiv.org/abs/2304.08466
10.
Shu
,
D.
,
Cunningham
,
J.
,
Stump
,
G.
,
Miller
,
S. W.
,
Yukish
,
M. A.
,
Simpson
,
T. W.
, and
Tucker
,
C. S.
,
2020
, “
3d Design Using Generative Adversarial Networks and Physics-Based Validation
,”
ASME J. Mech. Des.
,
142
(
7
), p.
071701
.
11.
Heyrani Nobari
,
A.
,
Srivastava
,
A.
,
Gutfreund
,
D.
, and
Ahmed
,
F.
,
2022
, “
Links: A Dataset of a Hundred Million Planar Linkage Mechanisms for Data-Driven Kinematic Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
, American Societyof Mechanical Engineers, Vol. 86229, p. V03AT03A013.
12.
Han
,
Y.
, and
Moghaddam
,
M.
,
2021
, “
Eliciting Attribute-Level User Needs From Online Reviews With Deep Language Models and Information Extraction
,”
ASME J. Mech. Des.
,
143
(
6
), p.
061403
.
13.
Qiu
,
Y.
, and
Jin
,
Y.
,
2023
, “
Document Understanding-Based Design Support: Application of Language Model for Design Knowledge Extraction
,”
ASME J. Mech. Des.
,
145
(
12
), p.
121401
.
14.
Zhu
,
Q.
, and
Luo
,
J.
,
2022
, “
Generative Pre-Trained Transformer for Design Concept Generation: An Exploration
,”
Proc. Des. Soc.
,
2
, pp.
1825
1834
. doi:10.1017/pds.2022.185
15.
Wang
,
B.
,
Zuo
,
H.
,
Cai
,
Z.
,
Yin
,
Y.
,
Childs
,
P.
,
Sun
,
L.
, and
Chen
,
L.
,
2023
, “
A Task-Decomposed AI-Aided Approach for Generative Conceptual Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 13–16
, American Society of Mechanical Engineers, Vol. 87349, p. V006T06A009.
16.
Siddharth
,
L.
,
Blessing
,
L.
, and
Luo
,
J.
,
2022
, “
Natural Language Processing in-and-for Design Research
,”
Des. Sci.
,
8
(
1
), p.
e21
.
17.
Shaik Vadla
,
M. K.
,
Suresh
,
M. A.
, and
Viswanathan
,
V. K.
,
2024
, “
Enhancing Product Design Through AI-Driven Sentiment Analysis of Amazon Reviews Using BERT
,”
Algorithms
,
17
(
2
), pp.
59
.
18.
Nori
,
H.
,
King
,
N.
,
McKinney
,
S. M.
,
Carignan
,
D.
, and
Horvitz
,
E.
,
2023
, “
Capabilities of Gpt-4 on Medical Challenge Problem
,”
arXiv Preprint arXiv:2303.13375
. https://arxiv.org/abs/2303.13375
19.
Ziems
,
C.
,
Held
,
W.
,
Shaikh
,
O.
,
Chen
,
J.
,
Zhang
,
Z.
, and
Yang
,
D.
,
2024
, “
Can Large Language Models Transform Computational Social Science?
Comput. Ling.
,
50
(
1
), pp.
237
291
.
20.
Qiu
,
Y.
, and
Jin
,
Y.
,
2024
, “
ChatGPT and Finetuned BERT: A Comparative Study for Developing Intelligent Design Support Systems
,”
Intell. Syst. Appl.
,
21
(
1
), p.
200308
.
21.
Brown
,
T.
,
Mann
,
B.
,
Ryder
,
N.
,
Subbiah
,
M.
,
Kaplan
,
J.
,
Dhariwal
,
P.
,
Neelakantan
,
A.
, et al
,
2020
, “
Language Models Are Few-Shot Learners
,”
Adv. Neural Inf. Process. Syst.
,
33
(
1
), pp.
1877
1901
.
22.
Bubeck
,
S.
,
Chandrasekaran
,
V.
,
Eldan
,
R.
,
Gehrke
,
J.
,
Horvitz
,
E.
,
Kamar
,
E.
,
Lee
,
P.
, et al
,
2023
, “
Sparks of Artificial General Intelligence: Early Experiments with Gpt-4
,”
arXiv Preprint arXiv:2303.12712
. https://arxiv.org/abs/2303.12712
23.
Pornprasit
,
C.
, and
Tantithamthavorn
,
C.
,
2024
, “
Fine-Tuning and Prompt Engineering for Large Language Models-Based Code Review Automation
,”
Inf. Softw. Technol.
,
175
(
1
), p.
107523
.
24.
Reynolds
,
L.
, and
McDonell
,
K.
,
2021
, “
Prompt Programming for Large Language Models: Beyond the Few-Shot Paradigm
,”
Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems
,
Yokohama, Japan
,
May 8 –13
, pp.
1
7
.
25.
Trummer
,
I.
,
2022
, “
CodexDB: Synthesizing Code for Query Processing From Natural Language Instructions Using GPT-3 Codex
,”
Proc. VLDB Endow.
,
15
(
11
), pp.
2921
2928
.
26.
White
,
J.
,
Fu
,
Q.
,
Hays
,
S.
,
Sandborn
,
M.
,
Olea
,
C.
,
Gilbert
,
H.
,
Elnashar
,
A.
, et al
,
2023
, “
A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT
,”
arXiv Preprint arXiv:2302.11382
. https://arxiv.org/abs/2302.11382
27.
Wei
,
J.
,
Wang
,
X.
,
Schuurmans
,
D.
,
Bosma
,
M.
,
Ichter
,
B.
,
Xia
,
F.
,
Chi
,
E.
, et al
,
2022
, “
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
,”
Adv. Neural Inf. Process. Syst.
,
35
(
1
), pp.
24824
24837
.
28.
Kojima
,
T.
,
Gu
,
S. S.
,
Reid
,
M.
,
Matsuo
,
Y.
, and
Iwasawa
,
Y.
,
2022
, “
Large Language Models Are Zero-Shot Reasoners
,”
Adv. Neural Inf. Process. Syst.
,
35
(
1
), pp.
22199
22213
.
29.
Thrun
,
S.
,
1998
, “
Lifelong Learning Algorithms
,”
Learn. Learn
,
8
(
1
), pp.
181
209
.
30.
Ravi
,
S.
, and
Larochelle
,
H.
,
2017
, “
Optimization as a Model for Few-Shot Learning
,”
International Conference on Learning Representations
,
Palais des Congrès Neptune, Toulon, France
,
Apr. 24–26
, pp.
1
11
.
31.
Fei-Fei
,
L.
,
Fergus
,
R.
, and
Perona
,
P.
,
2006
, “
One-Shot Learning of Object Categories
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
28
(
4
), pp.
594
611
.
32.
Wang
,
W.
,
Zheng
,
V. W.
,
Yu
,
H.
, and
Miao
,
C.
,
2019
, “
A Survey of Zero-Shot Learning: Settings, Methods, and Applications
,”
ACM Trans. Intell. Syst. Technol.
,
10
(
2
), pp.
1
37
.
33.
Bouhana
,
A.
,
Zidi
,
A.
,
Fekih
,
A.
,
Chabchoub
,
H.
, and
Abed
,
M.
,
2015
, “
An Ontology-Based CBR Approach for Personalized Itinerary Search Systems for Sustainable Urban Freight Transport
,”
Expert Syst. Appl.
,
42
(
7
), pp.
3724
3741
.
34.
Zhang
,
Z.
,
Liu
,
L.
,
Wei
,
W.
,
Tao
,
F.
,
Li
,
T.
, and
Liu
,
A.
,
2017
, “
A Systematic Function Recommendation Process for Data-Driven Product and Service Design
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111404
.
35.
Zhu
,
Q.
,
Zhang
,
X.
, and
Luo
,
J.
,
2023
, “
Biologically Inspired Design Concept Generation Using Generative Pre-Trained Transformers
,”
ASME J. Mech. Des.
,
145
(
4
), p.
041409
.
36.
Hu
,
X.
,
Tian
,
Y.
,
Nagato
,
K.
, and
Liu
,
A.
,
2023
, “
Opportunities and Challenges of ChatGPT for Design Knowledge Management
,” arXiv Preprint arXiv:2304.02796.
37.
Wang
,
X.
,
Anwer
,
N.
,
Dai
,
Y.
, and
Liu
,
A.
,
2023
, “
ChatGPT for Design, Manufacturing, and Education
,”
Procedia CIRP
,
119
(
1
), pp.
7
14
.
38.
Badini
,
S.
,
Regondi
,
S.
,
Frontoni
,
E.
, and
Pugliese
,
R.
,
2023
, “
Assessing the Capabilities of ChatGPT to Improve Additive Manufacturing Troubleshooting
,”
Adv. Ind. Eng. Polym. Res.
,
6
(
3
), pp.
278
287
.
39.
Panchal
,
J. H.
,
Fuge
,
M.
,
Liu
,
Y.
,
Missoum
,
S.
, and
Tucker
,
C.
,
2019
, “
Machine Learning for Engineering Design
,”
ASME J. Mech. Des.
,
141
(
11
), p.
110301
.
40.
Chen
,
W.
, and
Fuge
,
M.
,
2019
, “
Synthesizing Designs With Interpart Dependencies Using Hierarchical Generative Adversarial Networks
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111403
.
41.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
42.
Picard
,
C.
,
Schiffmann
,
J.
, and
Ahmed
,
F.
,
2023
, “
Dated: Guidelines for Creating Synthetic Datasets for Engineering Design Applications
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 20–23
.
43.
Whalen
,
E.
,
Beyene
,
A.
, and
Mueller
,
C.
,
2021
, “
SimJEB: Simulated Jet Engine Bracket Dataset
,”
Comput. Graphics Forum
,
40
(
1
), pp.
9
17
.
44.
Wollstadt
,
P.
,
Bujny
,
M.
,
Ramnath
,
S.
,
Shah
,
J. J.
,
Detwiler
,
D.
, and
Menzel
,
S.
,
2022
, “
CarHoods10k: An Industry-Grade Data Set for Representation Learning and Design Optimization in Engineering Applications
,”
IEEE Trans. Evol. Comput.
,
26
(
6
), pp.
1221
1235
.
45.
Mahowald
,
K.
,
Ivanova
,
A. A.
,
Blank
,
I. A.
,
Kanwisher
,
N.
,
Tenenbaum
,
J. B.
, and
Fedorenko
,
E.
,
2024
, “
Dissociating Language and Thought in Large Language Models
,”
Trends Cognit. Sci.
,
28
(
6
), pp.
517
540
.
46.
Qiu
,
Y.
,
2023
, “
DesignData
,” .
47.
Zuccon
,
G.
, and
Koopman
,
B.
,
2023
, “
Dr Chatgpt, Tell Me What I Want to Hear: How Prompt Knowledge Impacts Health Answer Correctness
,” arXiv Preprint arXiv:2302.13793.
48.
Qiu
,
Y.
,
2024
,
Synthetic Design-Related Data [Data set]
.
Zenodo
.
49.
Reimers
,
N.
, and
Gurevych
,
I.
,
2019
, “
Sentence-Bert: Sentence Embeddings Using Siamese Bert-Networks
,” arXiv Preprint arXiv:1908.10084.
50.
Van der Maaten
,
L.
, and
Hinton
,
G.
,
2008
, “
Visualizing Data Using T-SNE
,”
J. Mach. Learn. Res.
,
9
(
11
), pp.
2579
2605
.
51.
Lin
,
J.
,
1991
, “
Divergence Measures Based on the Shannon Entropy
,”
IEEE Trans. Inf. Theory
,
37
(
1
), pp.
145
151
.
52.
Zellinger
,
W.
,
Grubinger
,
T.
,
Lughofer
,
E.
,
Natschläger
,
T.
, and
Saminger-Platz
,
S.
,
2017
, “
Central Moment Discrepancy (CMD) for Domain-Invariant Representation Learning
,” arXiv Preprint arXiv:1702.08811.
53.
Cohen
,
J.
,
1960
, “
A Coefficient of Agreement for Nominal Scales
,”
Educ. Psychol. Meas.
,
20
(
1
), pp.
37
46
.
54.
Student
,
1908
, “
The Probable Error of a Mean
,”
Biometrika
,
6
(
1
), pp.
1
25
.
55.
Wilkinson
,
M. D.
,
Dumontier
,
M.
,
Aalbersberg
,
I. J.
,
Appleton
,
G.
,
Axton
,
M.
,
Baak
,
A.
,
Blomberg
,
N.
, et al
,
2016
, “
The FAIR Guiding Principles for Scientific Data Management and Stewardship
,”
Sci. Data
,
3
(
1
), pp.
1
9
.
You do not currently have access to this content.