Singularity is a major problem for parallel robots as in these configurations the robot cannot be controlled, and there may be infinite forces/torques in its joints, possibly leading to a robot breakdown. In the recent years classification and detection of singularities have made large progress. However, the issue of closeness to a singularity is still open and we propose in this paper an approach that is based on a static analysis. Our measure of closeness to a singularity is based on the very practical issue of having the joint forces/torques lower than a given threshold. We consider a planar parallel robot whose end-effector has a constant orientation and is submitted to a known wrench and we show that it is possible to compute the border of the region that describes all possible end-effector location for which the joint forces are lower than the fixed threshold.

1.
Borel
,
E.
, 1998, “
Mémoire sur les déplacements à trajectoire sphériques
,”
Mech. Mach. Theory
0094-114X,
33
(
1
), pp.
1
128
.
2.
Bricard
,
R.
, 1897, “
Mémoire sur la théorie de l’octaèdre articulé
,”
J. Math. Pures Appl.
0021-7824,
3
, pp.
113
148
.
3.
Cauchy
,
A.
, 1813, “Deuxième mémoire sur les polygones et les polyèdres,” J. Ec. Polytech. (Paris), pp. 87–98.
4.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Clarendon
,
Oxford
.
5.
Gosselin
,
C.
, and
Angeles
,
J.
, 1990, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
3
), pp.
281
290
.
6.
Husty
,
M. L.
, and
Karger
,
A.
, 2000, “
Architecture Singular Parallel Manipulators and Their Self-Motions
,” in
ARK
,
Piran
, Jun., 25–29, pp.
355
364
.
7.
Wohlhart
,
K.
, (1999), “
Degrees of Shakiness
,”
Mech. Mach. Theory
0094-114X,
34
(
7
), pp.
1103
1126
.
8.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
, 1998, “
Identification and Classification of the Singular Configurations of Mechanisms
,”
Mech. Mach. Theory
0094-114X,
33
(
6
), pp.
743
760
.
9.
Mayer St-Onge
,
B.
, and
Gosselin
,
C. M.
, 2000, “
Singularity Analysis and Representation of the General Gough–Stewart Platform
,”
Int. J. Robot. Res.
0278-3649,
19
(
3
), pp.
271
288
.
10.
Merlet
,
J.-P.
, 1989, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Robot. Res.
0278-3649,
8
(
5
), pp.
45
56
.
11.
Pernkopf
,
F.
, 2003, “
Workspace Analysis of Stewart–Gough Platforms
” Ph.D. thesis, South Korea, University of Innsbruck, Innsbruck.
12.
Pottmann
,
H.
,
Peternell
,
M.
, and
Ravani
,
B.
, 1998, “
Approximation in Line Space. Applications in Robot Kinematics
,” in,
ARK
,
Strobl
, Jun. 29–Jul. 4, pp.
403
412
.
13.
Sefrioui
,
J.
, and
Gosselin
,
C. M.
, 1995, “
On the Quadratic Nature of the Singularity Curves of Planar Three-Degree-of-Freedom Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
30
(
4
), pp.
533
551
.
14.
Voglewede
,
P. A.
, and
Ebert-Uphoff
,
I.
, 2004, “
Measuring Closeness to Singularities for Parallel Manipulators
,” in
IEEE International Conference on Robotics and Automation
,
New Orleans, LA
, Apr. 28–30, pp.
4539
4544
.
15.
Wolf
,
A.
, and
Shoham
,
M.
, 2003, “
Investigation of Parallel Manipulators Using Linear Complex Approximation
,”
ASME J. Mech. Des.
1050-0472,
125
(
3
), pp.
564
572
.
16.
Bhattacharya
,
S.
,
Hatwal
,
H.
, and
Ghosh
,
A.
, 1998, “
Comparison of an Exact and an Approximate Method of Singularity Avoidance in Platform Type Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
33
(
7
), pp.
965
974
.
17.
Nenchev
,
D. N.
, and
Uchiyama
,
M.
, 1996, “
Singularity-Consistent Path Planning and Control of Parallel Robot Motion Through Instantaneous-Self-Motion Type
,” in
IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
, Apr. 24–26, pp.
1864
1870
.
18.
O’Brien
,
J. F.
, and
Wen
,
J. T.
, 2001, “
Kinematic Control of Parallel Robots in the Presence of Unstable Singularities
,” in
IEEE International Conference on Robotics and Automation
,
Seoul, South Korea
, May 23–25, pp.
3154
3159
.
19.
Sen
,
S.
,
Dasgupta
,
B.
, and
Mallik
,
A. K.
, 2003, “
Variational Approach for Singularity-Path Planning of Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
38
(
11
), pp.
1165
1183
.
20.
Zein
,
M.
,
Wenger
,
P.
, and
Chablat
,
D.
, 2006, “
Singular Curves and Cusp Points in the Joint Space of 3-RPR Parallel Manipulators
,” in
IEEE International Conference on Robotics and Automation
,
Orlando, FL
, May 16–18, pp.
777
782
.
21.
Merlet
,
J.-P.
, 2007, “
A Formal-Numerical Approach for Robust in-Workspace Singularity Detection
,”
IEEE Trans. Rob. Autom.
1042-296X,
23
(
3
), pp.
393
402
.
22.
Li
,
H.
,
Gosselin
,
C. M.
, and
Richard
,
M. J.
, 2006, “
Determination of Maximal Singularity-Free Zones in the Workspace of Planar Three-Degree-of-Freedom Parallel Mechanisms
,”
Mech. Mach. Theory
0094-114X,
41
(
10
), pp.
1157
1167
.
23.
Dash
,
A. K.
, 2005, “
Workspace Generation and Planning Singularity-Free Path for Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
40
(
7
), pp.
778
805
.
24.
Wenger
,
P.
, and
Chablat
,
D.
, 1998, “
Workspace and Assembly Modes in Fully Parallel Manipulators: A Descriptive Study
,” in
ARK
,
Strobl
, Jun. 29–Jul 4, pp.
117
126
.
25.
Zein
,
M.
,
Wenger
,
P.
, and
Chablat
,
D.
, 2007, “
Singular Curves in the Joint Space and Cusp Points Of 3-RP̱R Parallel Manipulators
,”
Robotica
0263-5747,
25
(
6
), pp.
712
724
.
26.
Hesselbach
,
J.
, and others, 2002, “
Connecting Assembly Modes for Workspace Enlargement
,” in,
ARK
,
Caldes de Malavalla
, Jun. 29–Jul. 2, pp.
347
356
.
27.
Jui C.
,
K. K.
, and
Sun
,
Q.
, 2005, “
Path Tracking of Parallel Manipulators in the Presence of Force Singularity
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
(
4
), pp.
550
563
.
28.
Lee
,
M. K.
, and
Park
,
K. W.
, 1999, “
Kinematics and Dynamics Analysis of a Double Parallel Manipulator for Enlarging Workspace and Avoiding Singularities
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
(
6
), pp.
1024
1034
.
You do not currently have access to this content.