Recent state-of-art researches on robot fish focus on revealing different swimming mechanisms and developing control methods to imitate the kinematics of the real fish formulated by the so-called Lighthill's theory. However, the reason why robot fish must follow this formula has not been fully studied. In this paper, we adopt a biomimetic untethered robot fish to study the kinematics of fish flapping. The robot fish consists of a wire-driven body and a soft compliant tail, which can perform undulatory motion using one motor. A dynamic model integrated with surrounding fluid is developed to predict the cruising speed, static thrust, dynamic thrust, and yaw stability of the robot fish. Three driving patterns of the motor are experimented to achieve three kinematic patterns of the robot fish, e.g., triangular pattern, sinusoidal pattern, and an over-cambered sinusoidal pattern. Based on the experiment results, it is found that the sinusoidal pattern generated the largest average static thrust and steady cruising speed, while the triangular pattern achieved the best yaw stability. The over-cambered sinusoidal pattern was compromised in both metrics. Moreover, the kinematics study has shown that the body curves of the robot fish were similar to the referenced body curves presented by the formula when using the sinusoidal pattern, especially the major thrust generation area. This research provides a guidance on the kinematic optimization and motor control of the undulatory robot fish.

References

1.
Taylor
,
G. K.
,
Nudds
,
R. L.
, and
Thomas
,
A. L.
,
2003
, “
Flying and Swimming Animals Cruise at a Strouhal Number Tuned for High Power Efficiency
,”
Nature
,
425
(
6959
), pp.
707
711
.
2.
Lighthill
,
M. J.
,
2006
, “
Note on the Swimming of Slender Fish
,”
J. Fluid Mech.
,
9
(
2
), p.
305
.
3.
Sfakiotakis, M., Lane, D. M., and Davies, J. B. C., 1999, “
Review of Fish Swimming Modes for Aquatic Locomotion
,”
IEEE J. Oceanic Eng.
,
24
(2), pp. 237–252.
4.
Anderson
,
J. M.
, and
Chhabra
,
N. K.
,
2002
, “
Maneuvering and Stability Performance of a Robotic Tuna
,”
Integr. Comp. Biol.
,
42
(
1
), pp.
118
126
.
5.
Yu
,
J.
,
Tan
,
M.
,
Wang
,
S.
, and
Chen
,
E.
,
2004
, “
Development of a Biomimetic Robotic Fish and Its Control Algorithm
,”
IEEE Trans. Syst., Man, Cybern., Part B (Cybern.)
,
34
(
4
), pp.
1798
1810
.
6.
Zhong
,
Y.
,
Li
,
Z.
, and
Du
,
R.
,
2018
, “
Robot Fish With Two-DOF Pectoral Fins and a Wire-Driven Caudal Fin
,”
Adv. Rob.
,
32
(
1
), pp.
25
36
.
7.
Liu
,
J.
, and
Hu
,
H.
,
2010
, “
Biological Inspiration: From Carangiform Fish to Multi-Joint Robotic Fish
,”
J. Bionic Eng.
,
7
(
1
), pp.
35
48
.
8.
y Alvarado
,
P. V.
, and
Youcef-Toumi
,
K.
,
2003
, “
Modeling and Design Methodology of an Efficient Underwater Propulsion System
,”
Robotics and Applications
, Salzburg, Austria, June 25–27, pp.
161
166
.http://www.actapress.com/Abstract.aspx?paperId=13655
9.
Zhong
,
Y.
,
Du
,
R.
, and
Chiu
,
P. W.
,
2015
, “
Tadpole Endoscope: A Wireless Micro Robot Fish for Examining the Entire Gastrointestinal (GI) Tract
,”
HKIE Trans.
,
22
(
2
), pp.
117
122
.
10.
Paxton, J. R., Eschmeyer, W. N., and Kirshner, D., 1998,
Encyclopedia of Fishes
, Academic Press, Singapore.
11.
Lauder
,
G. V.
,
Anderson
,
E. J.
,
Tangorra
,
J.
, and
Madden
,
P. G.
,
2007
, “
Fish Biorobotics: Kinematics and Hydrodynamics of Self-Propulsion
,”
J. Exp. Biol.
,
210
(
Pt 16
), pp.
2767
2780
.
12.
Anderson
,
J.
,
Streitlien
,
K.
,
Barrett
,
D.
, and
Triantafyllou
,
M.
,
1998
, “
Oscillating Foils of High Propulsive Efficiency
,”
J. Fluid Mech.
,
360
, pp.
41
72
.
13.
Wen
,
L.
, and
Lauder
,
G.
,
2013
, “
Understanding Undulatory Locomotion in Fishes Using an Inertia-Compensated Flapping Foil Robotic Device
,”
Bioinspiration Biomimetics
,
8
(
4
), p.
046013
.
14.
Zhong
,
Y.
,
Song
,
J.
,
Yu
,
H.
, and
Du
,
R.
,
2018
, “
Towards a Transform Method From Lighthill Fish Swimming Model to Biomimetic Robot Fish
,”
IEEE Rob. Autom. Lett.
,
3
(3), pp. 2632–2639.
15.
Lauder
,
G. V.
,
Lim
,
J.
,
Shelton
,
R.
,
Witt
,
C.
,
Anderson
,
E.
, and
Tangorra
,
J. L.
,
2011
, “
Robotic Models for Studying Undulatory Locomotion in Fishes
,”
Mar. Technol. Soc. J.
,
45
(
4
), pp.
41
55
.
16.
Wardle
,
C.
,
Videler
,
J.
, and
Altringham
,
J.
,
1995
, “
Tuning in to Fish Swimming Waves: Body Form, Swimming Mode and Muscle Function
,”
J. Exp. Biol.
,
198
(
Pt 8
), pp.
1629
1636
.http://jeb.biologists.org.libproxy1.nus.edu.sg/content/198/8/1629
17.
Triantafyllou
,
M.
,
Triantafyllou
,
G.
, and
Yue
,
D.
,
2000
, “
Hydrodynamics of Fishlike Swimming
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
33
53
.
18.
Lauder
,
G. V.
, and
Tytell
,
E. D.
,
2005
, “
Hydrodynamics of Undulatory Propulsion
,”
Fish Physiol.
,
23
, pp.
425
468
.
19.
Hover
,
F.
,
Haugsdal
,
Ø.
, and
Triantafyllou
,
M.
,
2004
, “
Effect of Angle of Attack Profiles in Flapping Foil Propulsion
,”
J. Fluids Struct.
,
19
(
1
), pp.
37
47
.
20.
Lu
,
K.
,
Xie
,
Y.
, and
Zhang
,
D.
,
2013
, “
Numerical Study of Large Amplitude, Nonsinusoidal Motion and Camber Effects on Pitching Airfoil Propulsion
,”
J. Fluids Struct.
,
36
, pp.
184
194
.
21.
Long
,
J.
,
Koob
,
T.
,
Irving
,
K.
,
Combie
,
K.
,
Engel
,
V.
,
Livingston
,
N.
,
Lammert
,
A.
, and
Schumacher
,
J.
,
2006
, “
Biomimetic Evolutionary Analysis: Testing the Adaptive Value of Vertebrate Tail Stiffness in Autonomous Swimming Robots
,”
J. Exp. Biol.
,
209
(
23
), pp.
4732
4746
.
22.
Liu
,
J.-D.
, and
Hu
,
H.
,
2006
, “
Biologically Inspired Behaviour Design for Autonomous Robotic Fish
,”
Int. J. Autom. Comput.
,
3
(
4
), pp.
336
347
.
23.
Zhong
,
Y.
, and
Du
,
R.
,
2016
, “
Design and Implementation of a Novel Robot Fish With Active and Compliant Propulsion Mechanism
,”
Robotics: Science and Systems
, Ann Arbor, MI, June 18–22, Paper No. 11.http://www.roboticsproceedings.org/rss12/p11.pdf
24.
Zhong
,
Y.
, and
Du
,
R.
,
2016
, “
Parametric Study of the Swimming Performance of a Novel Robot Fish With Active Compliant Propulsion Mechanism
,”
ASME
Paper No. DETC2016-60575.
25.
Zhong
,
Y.
,
Li
,
Z.
, and
Du
,
R.
,
2017
, “
A Novel Robot Fish With Wire-Driven Active Body and Compliant Tail
,”
IEEE/ASME Trans. Mechatronics
,
22
(4), pp. 1633–1643.
26.
Newman
,
J.
, and
Wu
,
T.
,
1973
, “
A Generalized Slender-Body Theory for Fish-like Forms
,”
J. Fluid Mech.
,
57
(
4
), pp.
673
693
.
27.
Epps
,
B. P.
,
Valdivia y Alvarado
,
P.
,
Youcef-Toumi
,
K.
, and
Techet
,
A. H.
,
2009
, “
Swimming Performance of a Biomimetic Compliant Fish-like Robot
,”
Exp. Fluids
,
47
(
6
), pp.
927
939
.
28.
Fossen
,
T. I.
,
1994
,
Guidance and Control of Ocean Vehicles
,
Wiley
, New York.
29.
Hoerner
,
S. F.
, and
Borst
,
H. V.
,
1985
,
Fluid-Dynamic Lift: Practical Information on Aerodynamic and Hydrodynamic Lift
, Hoerner Fluid Dynamics, Vancouver, WA.
30.
Pedley
,
T.
, and
Hill
,
S.
,
1999
, “
Large-Amplitude Undulatory Fish Swimming: Fluid Mechanics Coupled to Internal Mechanics
,”
J. Exp. Biol.
,
202
(
23
), pp.
3431
3438
.http://jeb.biologists.org/content/202/23/3431.short
31.
Journée
,
J.
, and
Massie
,
W.
,
2000
,
Offshore Hydromechanics
,
TU Delft
,
Delft, The Netherlands
.
32.
Bainbridge
,
R.
,
1958
, “
The Speed of Swimming of Fish as Related to Size and to the Frequency and Amplitude of the Tail Beat
,”
J. Exp. Biol.
,
35
(
1
), pp.
109
133
.http://jeb.biologists.org/content/35/1/109.short
33.
Videler
,
J.
, and
Wardle
,
C.
,
1991
, “
Fish Swimming Stride by Stride: Speed Limits and Endurance
,”
Rev. Fish Biol. Fisheries
,
1
(
1
), pp.
23
40
.
34.
Kaya
,
M.
, and
Tuncer
,
I. H.
,
2007
, “
Nonsinusoidal Path Optimization of a Flapping Airfoil
,”
AIAA J.
,
45
(
8
), pp.
2075
2082
.
35.
Clapham
,
R. J.
, and
Hu
,
H.
,
2015
, “
iSplash: Realizing Fast Carangiform Swimming to Outperform a Real Fish
,”
Robot Fish
,
Springer
, Berlin, pp.
193
218
.
36.
El Daou
,
H.
,
Salumae
,
T.
,
Chambers
,
L. D.
,
Megill
,
W. M.
, and
Kruusmaa
,
M.
,
2014
, “
Modelling of a Biologically Inspired Robotic Fish Driven by Compliant Parts
,”
Bioinspiration Biomimetics
,
9
(
1
), p.
016010
.
37.
Chowdhury
,
A. R.
,
Kumar
,
V.
,
Prasad
,
B.
,
Kumar
,
R.
, and
Panda
,
S.
,
2014
, “
Model-Based Control of a Bcf Mode Carangiform Bioinspired Robotic Fish
,”
Mar. Technol. Soc. J.
,
48
(
4
), pp.
36
50
.
38.
Anderson
,
E. J.
,
Mcgillis
,
W. R.
, and
Grosenbaugh
,
M. A.
,
2001
, “
The Boundary Layer of Swimming Fish
,”
J. Exp. Biol.
,
204
(
Pt 1
), pp.
81
102
.http://jeb.biologists.org/content/204/1/81.short
39.
Tytell
,
E. D.
,
2004
, “
Kinematics and Hydrodynamics of Linear Acceleration in Eels, Anguilla Rostrata
,”
Proc. R. Soc. London B: Biol. Sci.
,
271
(
1557
), pp.
2535
2540
.
You do not currently have access to this content.