The purpose of this work is to introduce a new parallel actuated exoskeleton architecture that can be used for multiple degree-of-freedom (DoF) biological joints. This is done in an effort to provide a better alternative for the augmentation of these joints than serial actuation. The new design can be described as a type of spherical parallel manipulator (SPM) that utilizes three 4 bar substructures to decouple and control three rotational DoFs. Four variations of the 4 bar spherical parallel manipulator (4B-SPM) are presented in this work. These include a shoulder, hip, wrist, and ankle exoskeleton. Also discussed are three different methods of actuation for the 4B-SPM, which can be implemented depending on dynamic performance requirements. This work could assist in the advancement of a future generation of parallel actuated exoskeletons that are more effective than their contemporary serial actuated counterparts.

References

1.
Craig
,
J. J.
,
2005
,
Introduction to Robotics: Mechanics and Control
,
Pearson/Prentice Hall
, Upper Saddle River, NJ.
2.
Bogue
,
R.
,
2009
, “
Exoskeletons and Robotic Prosthetics: A Review of Recent Developments
,”
Ind. Rob. Int. J
,
36
(
5
), pp.
421
427
.
3.
Marcheschi
,
S.
,
Salsedo
,
F.
,
Fontana
,
M.
, and
Bergamasco
,
M.
,
2011
, “
Body Extender: Whole Body Exoskeleton for Human Power Augmentation
,”
IEEE
International Conference on Robotics and Automation
, Shanghai, China, May 9–13, pp.
611
616
.
4.
Young
,
A. J.
, and
Ferris
,
D. P.
,
2017
, “
State of the Art and Future Directions for Lower Limb Robotic Exoskeletons
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
2
), pp.
171
182
.
5.
Toxiri
,
S.
,
Ortiz
,
J.
, and
Caldwell
,
D. G.
,
2018
, “
Assistive Strategies for a Back Support Exoskeleton: Experimental Evaluation
,”
Mechanisms and Machine Science
,
Springer
,
Cham, IL
, pp.
805
812
.
6.
Hunt
,
K. H.
,
1983
, “
Structural Kinematics of in-Parallel-Actuated Robot-Arms
,”
ASME J. Mech. Des
,
105
(
4
), pp.
705
712
.
7.
Stechert, C., Franke, H. J., and Wrege, C., 2006, “
Task-Based Modular Configurations for Hybrid and Redundant Parallel Robots
,”
IFAC Proceedings Volumes
,
39
(15), pp. 218–223.
8.
Merlet
,
J. P.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des
,
128
(
1
), pp.
199
206
.
9.
Gosselin
,
C.
,
1990
, “
Stiffness Mapping for Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
377
382
.
10.
Pashkevich
,
A.
,
Chablat
,
D.
, and
Wenger
,
P.
,
2009
, “
Stiffness Analysis of Overconstrained Parallel Manipulators
,”
Mech. Mach. Theory
,
44
(
5
), pp.
966
982
.
11.
Gosselin
,
C. M.
, and
Lavoie
,
E.
,
1993
, “
On the Kinematic Design of Spherical Three-Degree-of-Freedom Parallel Manipulators
,”
Int. J. Rob. Res
,
12
(
4
), pp.
394
402
.
12.
Gupta
,
A.
,
O'Malley
,
M. K.
,
Patoglu
,
V.
, and
Burgar
,
C.
,
2008
, “
Design, Control and Performance of RiceWrist: A Force Feedback Wrist Exoskeleton for Rehabilitation and Training
,”
International Journal of Robotics Research
,
Sage Publications
,
London
, pp.
233
251
.
13.
Erwin
,
A.
,
O'malley
,
M.
,
K.
,
Ress
,
D.
, and
Sergi
,
F.
,
2015
, “
Development, Control, and MRI-Compatibility of the MR-SoftWrist
,” IEEE International Conference on Rehabilitation Robotics (
ICORR
), Singapore, Aug. 11–14, pp. 187–192.
14.
Kim
,
H. S.
, and
Tsai
,
L.-W.
,
2002
, “
Kinematic Synthesis of Spatial 3-RPS Parallel Manipulators
,”
ASME
Paper No. DETC2002/MECH-34302
.
15.
Roy
,
A.
,
Krebs
,
H. I.
,
Williams
,
D. J.
,
Bever
,
C. T.
, and
W
,
L.
,
2009
, “
Robot-Aided Neurorehabilitation: A Novel Robot for Ankle Rehabilitation
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
569
582
.
16.
Alici
,
G.
, and
Shirinzadeh
,
B.
,
2004
, “
Topology Optimisation and Singularity Analysis of a 3-SPS Parallel Manipulator With a Passive Constraining Spherical Joint
,”
Mech. Mach. Theory
,
39
(
2
), pp.
215
235
.
17.
Pehlivan
,
A. U.
,
Sergi
,
F.
,
Erwin
,
A.
,
Yozbatiran
,
N.
,
Francisco
,
G. E.
, and
O'Malley
,
M. K.
,
2014
, “
Design and Validation of the RiceWrist-S Exoskeleton for Robotic Rehabilitation After Incomplete Spinal Cord Injury
,”
Robotica
,
32
(
8
), pp.
1415
1431
.
18.
Lee
,
H.
,
Ho
,
P.
,
Rastgaar
,
M. A.
,
Krebs
,
H. I.
, and
Hogan
,
N.
,
2011
, “
Multivariable Static Ankle Mechanical Impedance With Relaxed Muscles
,”
J. Biomech.
,
44
(
10
), pp.
1901
1908
.
19.
Husty
,
M. L.
,
1996
, “
An Algorithm for Solving the Direct Kinematics of General Stewart-Gough Platforms
,”
Mech. Mach. Theory
,
31
(
4
), pp.
365
380
.
20.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2004
, “
Type Synthesis of 3-DOF Translational Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
83
92
.
21.
Tsai
,
L.-W.
, and
Joshi
,
S.
,
2000
, “
Kinematics and Optimization of a Spatial 3-UPU Parallel Manipulator
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
439
446
.
22.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2004
, “
Type Synthesis of 3-DOF Spherical Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
101
108
.
23.
Walter
,
D. R.
,
Husty
,
M. L.
, and
Pfurner
,
M.
,
2009
, “
A Complete Kinematic Analysis of the SNU 3-UPU Parallel Robot
,”
Contemp. Math.
,
496
, p. 331.
24.
Wu
,
J.
,
Wang
,
J.
, and
You
,
Z.
,
2011
, “
A Comparison Study on the Dynamics of Planar 3-DOF 4-RRR, 3-RRR and 2-RRR Parallel Manipulators
,”
Rob. Comput. Integr. Manuf.
,
27
(
1
), pp.
150
156
.
25.
Hunt
,
J.
,
Lee
,
H.
, and
Artemiadis
,
P.
,
2016
, “
A Novel Shoulder Exoskeleton Robot Using Parallel Actuation and a Passive Slip Interface
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011002
.
26.
lee
,
1988
, “
Dynamic Analysis of a Three-Degrees-of-Freedom in Parallel Actuated Manipulator
,”
IEEE J. Rob. Autom.
,
4
(
3
), pp.
354
360
.
27.
Liu
,
X. J.
,
Jin
,
Z. L.
, and
Gao
,
F.
,
2000
, “
Optimum Design of 3-DOF Spherical Parallel Manipulators With respect to the Conditioning and Stiffness Indices
,”
Mech. Mach. Theory
,
35
(
9
), pp.
1257
1267
.
28.
Hoffman
,
J.
,
2006
,
Norms for Fitness, Performance, and Health
,
Human Kinetics
, Champaign, IL.
29.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
, New York, NY.
30.
Schiele
,
A.
, and
Van Der Helm
,
F. C. T.
,
2006
, “
Kinematic Design to Improve Ergonomics in Human Machine Interaction
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
14
(
4
), pp.
456
469
.
31.
Cempini
,
M.
,
De Rossi
,
S. M. M.
,
Lenzi
,
T.
,
Vitiello
,
N.
, and
Carrozza
,
M. C.
,
2013
, “
Self-Alignment Mechanisms for Assistive Wearable Robots: A Kinetostatic Compatibility Method
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
236
250
.
32.
Stienen
,
A. H. A.
,
Hekman
,
E. E. G.
,
van der Helm
,
F. C. T.
, and
van der Kooij
,
H.
,
2009
, “
Self-Aligning Exoskeleton Axes Through Decoupling of Joint Rotations and Translations
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
628
633
.
33.
Glosser
,
G. D.
, and
Newman
,
W. S.
,
1994
, “
The Implementation of a Natural Admittance Controller on an Industrial Manipulator
,”
IEEE
International Conference Robot Automation
, San Diego, CA, May 8–13, pp.
1209
1215
.
34.
Hogan
,
N.
,
1988
, “
On the Stability of Manipulators Performing Contact Tasks
,”
IEEE J. Rob. Autom.
,
4
(
6
), pp.
677
686
.
35.
Park
,
J.-H.
,
Stegall
,
P.
, and
Agrawal
,
S. K.
,
2015
, “
Dynamic Brace for Correction of Abnormal Postures of the Human Spine
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
5922
5927
.
You do not currently have access to this content.