Tape springs are thin-walled structures with zero longitudinal and constant transverse curvature. Folding them twice and connecting both ends creates a tape loop which acts as a linear guide. At this time, there is insufficient understanding of the influence of the tape spring's cross section on its behavior. This study investigates the influence of the subtended angle on the tape spring's behavior, especially the energy distribution and the fold radius. First, some key aspects in the design of a twofold tape loop are discussed. By performing a curvature analysis of this folded geometry, the different regions within a tape spring are identified. This information is used to identify the influence of the subtended angle on the geometry and energy state of the tape loop. The fold radius and fold angle are determined by analyzing the geometry of the fold region. The analysis showed that the energy within the transition regions cannot be neglected. The energy within these regions and the length of the transition regions both increase with the subtended angle. It is also shown that the fold radius is not constant when the subtended angle is small. The subtended angle should be above 100 deg to ensure a constant radius.

References

1.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
, eds.,
2013
,
Handbook of Compliant Mechanisms
,
Wiley
,
New Delhi, India
.
2.
Lamers
,
A.
,
Sánchez
,
J. A. G.
, and
Herder
,
J. L.
,
2015
, “
Design of a Statically Balanced Fully Compliant Grasper
,”
Mech. Mach. Theory
,
92
, pp.
230
239
.
3.
Kota
,
S.
,
Joo
,
J.
,
Li
,
Z.
,
Rodgers
,
S. M.
, and
Sniegowski
,
J.
,
2001
, “
Design of Compliant Mechanisms: Applications to MEMS
,”
Analog Integr. Circuits Signal Process.
,
29
(
1/2
), pp.
7
15
.
4.
Radaelli
,
G.
, and
Herder
,
J. L.
,
2017
, “
Gravity Balanced Compliant Shell Mechanisms
,”
Int. J. Solids Struct.
,
118–119
, pp.
78
88
.
5.
Calladine
,
C. R.
,
1988
, “
The Theory of Thin Shell Structures 1888–1988
,”
Inst. Mech. Eng.
,
202
(
3
), pp.
141
149
.
6.
Seffen
,
K. A.
, and
Pellegrino
,
S.
,
1999
, “
Deployment Dynamics of Tape Springs
,”
Proc. R. Soc.
,
455
(
1983
), pp.
1003
1048
.
7.
Soykasap
,
Ö.
,
2007
, “
Analysis of Tape Spring Hinges
,”
Int. J. Mech. Sci.
,
49
(
7
), pp.
853
860
.
8.
Rimrott
,
F. P. J.
,
1966
, “
Storable Tubular Extendible Members
,”
Eng. Dig.
,
5
(8), pp. 29–34.
9.
Seffen
,
K. A.
,
Pellegrino
,
S.
, and
Parks
,
G. T.
,
2000
, “
Deployment of a Panel by Tape-Spring Hinges
,”
IUTAM-IASS Symposium on Deployable Structures: Theory and Applications
, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp.
355
364
.
10.
Seffen
,
K.
,
You
,
Z.
, and
Pellegrino
,
S.
,
2000
, “
Folding and Deployment of Curved Tape Springs
,”
Int. J. Mech. Sci.
,
42
(
10
), pp.
2055
2073
.
11.
Costantine
,
J.
,
Tawk
,
Y.
,
Christodoulou
,
C. G.
,
Banik
,
J.
, and
Lane
,
S.
,
2012
, “
CubeSat Deployable Antenna Using Bistable Composite Tape-Springs
,”
IEEE Antennas Wireless Propagation Letters
,
11
, pp.
285
288
.
12.
Mallikarachchi
,
H.
, and
Pellegrino
,
S.
,
2011
, “
Quasi-Static Folding and Deployment of Ultrathin Composite Tape-Spring Hinges
,”
J. Spacecr. Rockets
,
48
(
1
), pp.
187
198
.
13.
Yellowhorse
,
A.
, and
Howell
,
L. L.
,
2018
, “
Deployable Lenticular Stiffeners for Origami-Inspired Mechanisms
,”
Mech. Based Des. Struct. Mach.
,
46
(
5
), pp.
634
649
.
14.
Vehar
,
C.
,
Kota
,
S.
, and
Dennis
,
R.
,
2004
, “
Closed-Loop Tape Springs as Fully Compliant Mechanisms: Preliminary Investigations
,”
ASME
Paper No. DETC2004-57403.
15.
Wilkes, D. F.,
1967
, “
Rolamite: New Mechanical Design Concept
,” Sandia National Laboratory, Albuquerque, NM, Technical Report No. SC-RR-67-656A.
16.
Cadman
,
R. V.
,
1969
, “
Rolamite-Geometry and Force Analysis
,”
ASME J. Eng. Ind.
,
91
(1), pp. 186–191.
17.
English
,
C.
, and
Russell
,
D.
,
1999
, “
Implementation of Variable Joint Stiffness Through Antagonistic Actuation Using Rolamite Springs
,”
Mech. Mach. Theory
,
34
(
1
), pp.
27
40
.
18.
Radaelli
,
G.
,
2017
, “
Synthesis of Mechanisms With Prescribed Elastic Load-Displacement Characteristics
,”
Ph.D dissertation
, Delft University of Technology, Delft, the Netherlands.https://repository.tudelft.nl/islandora/object/uuid%3Ad518b379-462a-448f-83ef-5ba0e761c578
19.
Bourgeois
,
S.
,
Cochelin
,
B.
,
Guinot
,
F.
, and
Picault
,
E.
,
2012
, “
Buckling Analysis of Tape Springs Using a Rod Model With Flexible Cross-Sections
,”
Eur. J. Comput. Mech.
,
21
(
3–6
), pp.
184
194
.
20.
Walker
,
S.
, and
Aglietti
,
G.
,
2007
, “
A Study of Tape Spring Fold Curvature for Space Deployable Structures
,”
Proc. Inst. Mech. Eng., Part G
,
221
(
3
), pp.
313
325
.
21.
Seffen
,
K. A.
,
2001
, “
On the Behavior of Folded Tape-Springs
,”
ASME J. Appl. Mech.
,
68
(
3
), pp.
369
375
.
22.
Radaelli
,
G.
, and
Herder
,
J. L.
,
2016
, “
Shape Optimization and Sensitivity of Compliant Beams for Prescribed Load-Displacement Response
,”
Mech. Sci.
,
7
(
2
), pp.
219
232
.
23.
Cottrell
,
J. A.
,
Hughes
,
T. J. R.
, and
Bazilevs
,
Y.
,
2009
,
Isogeometric Analysis: Toward Integration of CAD and FEA
,
Wiley
,
Chichester, UK
.
You do not currently have access to this content.