In this paper, the design of compliant three-dimensional (3D) printed surgical end-effectors for robotic lumbar discectomy is presented. Discectomy is the surgery to remove the herniated disk material that is pressing on a nerve root or spinal cord. This surgery is performed to relieve pain or numbness caused by the pressure on the nerve. The limited workspace of the spine (<27 cm3) results in challenging design requirements for surgical instruments. We propose a new cannula-based robotic lumbar discectomy procedure that can accommodate multiple articulated tools in the workspace at the same time and can be controlled teleoperatively by the surgeon. We present designs for two instruments for this proposed system: an articulated nerve retractor and an articulated grasper. The end-effectors of each are 3D printed with multiple materials, with flexible links acting as joints of the mechanism. These flexible links are actuated by cables which provide sufficient articulation and manipulation forces in the surgical workspace. The end-effector's articulated flexible joint kinematics is modeled and tested for range of motion capabilities. The retraction forces for the nerve retractor and the grasping force for the grasper are also experimentally tested and verified to meet all the design requirements. Additionally, fatigue testing of the flexible joint is presented and teleoperated control for the instruments is demonstrated. Finally, conceptual designs for new actuation systems are presented that will enable feasible surgical operations with the enhanced attributes of the designed end-effectors.

References

1.
Pugely
,
A. J.
,
Martin
,
C. T.
,
Gao
,
Y.
, and
Mendoza-Lattes
,
S. A.
,
2013
, “
Outpatient Surgery Reduces Short-Term Complications in Lumbar Discectomy
,”
Spine
,
38
(
3
), pp.
264
271
.
2.
PhysioWorks
, 2015, “
Bulging Disc
,” PhysioWorks, Sandgate Queesland, Australia, accessed Nov. 20, 2015, http://physioworks.com.au/injuries-conditions-1/bulging_disc
3.
Perez-Cruet
,
M.-J.
,
Foley
,
K.-T.
,
Isaacs
,
R.-E.
,
Rice-Wyllie
,
L.
,
Wellington
,
R.
,
Smith
,
M.-M.
, and
Fessler
,
R.-G.
, 2002, “
Microendoscopic Lumbar Discectomy: Technical Note
,”
Neurosurgery
,
51
(Suppl. 2), pp. S2-129–S2-136.
4.
Taylor
,
R. H.
, and
Stoianovici
,
D.
,
2003
, “
Medical Robotics in Computer-Integrated Surgery
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
765
781
.
5.
Bertelsen
,
A.
,
Melo
,
J.
,
Sánchez
,
E.
, and
Borro
,
D.
,
2013
, “
A Review of Surgical Robots for Spinal Interventions
,”
Int. J. Med. Rob.
,
9
(
4
), pp.
407
422
.
6.
Ascari
,
L.
,
Stefanini
,
C.
,
Bertocchi
,
U.
, and
Dario
,
P.
,
2010
, “
Robot-Assisted Endoscopic Exploration of the Spinal Cord
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
224
(
7
), pp.
1515
1529
.
7.
Ponnusamy
,
K.
,
Chewning
,
S.
, and
Mohr
,
C.
,
2009
, “
Robotic Approaches to the Posterior Spine
,”
Spine
,
34
(
19
), pp.
2104
2109
.
8.
Minor
,
M.
, and
Mukherjee
,
R.
,
1999
, “
A Mechanism for Dexterous End-Effector Placement During Minimally Invasive Surgery
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
472
479
.
9.
Yamashita
,
H.
,
Matsumiya
,
K.
,
Masamune
,
K.
,
Liao
,
H.
,
Chiba
,
T.
, and
Dohi
,
T.
,
2006
, “
Two-DOFs Bending Forceps Manipulator of 3.5-mm Diameter for Intrauterine Fetus Surgery: Feasibility Evaluation
,”
Int. J. Comput. Assisted Radiol. Surg.
,
1
(
Suppl. 1
), pp.
218
220
.
10.
Menciassi
,
A.
,
Park
,
J.
,
Lee
,
S.
,
Gorini
,
S.
,
Dario
,
P.
, and
Park
,
J.-O. P. J.-O.
,
2002
, “
Robotic Solutions and Mechanisms for a Semi-Autonomous Endoscope
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Lausanne, Switzerland, Sept. 30–Oct. 4, pp.
1379
1384
.
11.
Simaan
,
N.
,
Taylor
,
R.
, and
Flint
,
P.
,
2004
, “
A Dexterous System for Laryngeal Surgery
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), New Orleans, LA, Apr. 21–May 1, pp.
351
357
.
12.
Kim
,
Y.
,
Cheng
,
S. S.
,
Diakite
,
M.
,
Gullapalli
,
R. P.
,
Simard
,
J. M.
, and
Desai
,
J. P.
,
2017
, “
Toward the Development of a Flexible Mesoscale MRI-Compatible Neurosurgical Continuum Robot
,”
IEEE Trans. Rob.
,
33
(
6
), pp.
1386
1397
.
13.
Harada
,
K.
,
Tsubouchi
,
K.
,
Fujie
,
M. G.
, and
Chiba
,
T.
,
2005
, “
Micro Manipulators for Intrauterine Fetal Surgery in an Open MRI
,”
IEEE
International Conference on Robotics and Automation
, Barcelona, Spain, Apr. 18–22, pp.
502
507
.
14.
Tortora
,
G.
,
Dario
,
P.
, and
Menciassi
,
A.
,
2014
, “
Array of Robots Augmenting the Kinematics of Endocavitary Surgery
,”
IEEE/ASME Trans. Mechatronics
,
19
(
6
), pp.
1821
1829
.
15.
Gan
,
L. S.
,
Zareinia
,
K.
,
Lama
,
S.
,
Maddahi
,
Y.
,
Yang
,
F. W.
, and
Sutherland
,
G. R.
,
2015
, “
Quantification of Forces During a Neurosurgical Procedure: A Pilot Study
,”
World Neurosurg.
,
84
(
2
), pp.
537
548
.
16.
Takahashi
,
K.
,
Shima
,
I.
, and
Porter
,
R. W.
,
1999
, “
Nerve Root Pressure in Lumbar Disc Herniation
,”
Spine
,
24
(
19
), pp.
2003
2006
.
17.
Tholey
,
G.
,
Pillarisetti
,
A.
,
Green
,
W.
,
Desai
,
J. P.
, and
Sensing
,
I.
,
2004
, “
Direct 3-D Force Measurement Capability in an Auto-1 Mated Laparoscopic Grasper
,”
Eurohaptics 2004 Conference
, Munich, Germany, June 5–7, pp.
478
481
.
18.
Huang
,
S. H.
,
Liu
,
P.
,
Mokasdar
,
A.
, and
Hou
,
L.
,
2013
, “
Additive Manufacturing and Its Societal Impact: A Literature Review
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1191
1203
.
19.
Liu
,
Q.
,
Leu
,
M. C.
, and
Schmitt
,
S. M.
,
2006
, “
Rapid Prototyping in Dentistry: Technology and Application
,”
Int. J. Adv. Manuf. Technol.
,
29
(
3–4
), pp.
317
335
.
20.
George
,
M.
,
Aroom
,
K. R.
,
Hawes
,
H. G.
,
Gill
,
B. S.
, and
Love
,
J.
,
2017
, “
3D Printed Surgical Instruments: The Design and Fabrication Process
,”
World J. Surg.
,
41
(
1
), pp.
314
319
.
21.
Rankin
,
T. M.
,
Giovinco
,
N. A.
,
Cucher
,
D. J.
,
Watts
,
G.
,
Hurwitz
,
B.
, and
Armstrong
,
D. G.
,
2014
, “
Three-Dimensional Printing Surgical Instruments: Are We There Yet?
,”
J. Surg. Res.
,
189
(
2
), pp.
193
197
.
22.
Jelínek
,
F.
,
Pessers
,
R.
, and
Breedveld
,
P.
,
2014
, “
DragonFlex Smart Steerable Laparoscopic Instrument
,”
ASME J. Med. Devices
,
8
(
1
), p.
015001
.
23.
Jacobsen
,
S. C.
,
Ko
,
H.
,
Iversen
,
E. K.
, and
Davis
,
C. C.
,
1990
, “
Control Strategies for Tendon-Driven Manipulators
,”
IEEE Control Syst. Mag.
,
10
(
2
), pp.
23
28
.
You do not currently have access to this content.