Soft linear actuators (SLAs) make linear displacement by shrinkage and relaxation like skeletal muscles, so they can be called as artificial skeletal muscles (ASMs). They deform their body to create displacement. However, the restoring force generated by the deformation of their soft body reduces the force available from the SLA. This actuation structure is a critical drawback in the application of SLAs. In a living body, skeletal muscle is the main actuator to make movement. In order to make meaningful movements, skeletal muscles of a living body require bones and joints. Thus, as well as ASMs, artificial joints are surely required for developing robotic applications such as robotic prosthetics and bionic body parts. This paper introduces a biomimetic artificial joint mechanism that can improve the drawback of SLA. The basic performance and usefulness of the joint mechanism was confirmed by using shape-memory-alloy actuators (called SMA in general). In addition, the joint control strategy of the joint mechanism by adopting the joint control principle of a living body was proposed and its performance was experimentally validated.

References

1.
Belforte
,
G.
,
Eula
,
G.
,
Ivanov
,
A.
, and
Sirolli
,
S.
,
2014
, “
Soft Pneumatic Actuators for Rehabilitation
,”
Actuators
,
3
(
2
), pp.
84
106
.
2.
Cullinan
,
M. F.
,
Bourke
,
E.
,
Kelly
,
K.
, and
McGinn
,
C.
,
2017
, “
A McKibben Type Sleeve Pneumatic Muscle and Integrated Mechanism for Improved Stroke Length
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011013
.
3.
Tondu
,
B.
,
2014
, “
Robust and Accurate Closed-Loop Control of McKibben Artificial Muscle Contraction With a Linear Single Integral Action
,”
Actuators
,
3
(
2
), pp.
142
161
.
4.
Ishikawa
,
T.
, and
Nakamura
,
T.
,
2016
, “
Portability and Antagonistic Stiffness Control for an Shape Memory Alloy Artificial Muscle Actuator Protected by a Rolled Film Tube
,”
IEEE International Conference on Advanced Intelligent Mechatronics
(
AIM
), Banff, AB, Canada, June 12–15, pp.
220
227
.
5.
Seok
,
S.
,
Onal
,
C. D.
,
Cho
,
K. J.
,
Wood
,
R. J.
,
Rus
,
D.
, and
Kim
,
S.
,
2013
, “
Mesh worm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators
,”
IEEE/ASME Trans. Mechatronics
,
18
(
5
), pp.
1485
1497
.
6.
Nguyen
,
C. T.
,
Phung
,
H.
,
Nguyen
,
T. D.
,
Lee
,
C.
,
Kim
,
U.
,
Lee
,
D.
,
Moon
,
H.
,
Koo
,
J.
,
Nam
,
J.
, and
Choi
,
H. R.
,
2014
, “
A Small Biomimetic Quadruped Robot Driven by Multistacked Dielectric Elastomer Actuators
,”
Smart Mater. Struct.
,
23
(
6
), pp.
1
12
.
7.
Jung
,
H. S.
,
Yang
,
S. Y.
,
Cho
,
K. H.
,
Song
,
M.
, and
Choi
,
H. R.
,
2016
, “
Twisted Dielectric Elastomer Stack Actuator
,”
International Conference on Ubiquitous Robots and Ambient Intelligence
(
URAI
), Xian, China, Aug. 19–22, pp.
112
113
.
8.
Martinez
,
R. V.
,
Fish
,
C. R.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2012
, “
Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators
,”
Adv. Funct. Mater.
,
22
(
7
), pp.
1376
1384
.
9.
Wehner
,
M.
,
Park
,
Y. L.
,
Walsh
,
C.
,
Nagpal
,
R.
, and
Wood
,
R. J.
,
2012
, “
Experimental Characterization of Components for Active Soft Orthotics
,”
IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Rome, Italy, June 24–27, pp.
1586
1592
.
10.
Skorina
,
E. H.
,
Luo
,
M.
,
Ozel
,
S.
,
Chen
,
F.
,
Tao
,
W.
, and
Onal
,
C. D.
,
2015
, “
Feedforward Augmented Sliding Mode Motion Control of Antagonistic Soft Pneumatic Actuators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
2544
2549
.
11.
Buchler
,
D.
,
Ott
,
H.
, and
Peters
,
J.
,
2016
, “
A Lightweight Robotic Arm With Pneumatic Muscles for Robot Learning
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
4086
4092
.
12.
Hawkes
,
E. W.
,
Christensen
,
D. L.
, and
Okamura
,
A. M.
,
2016
, “
Design and Implementation of a 300% Strain Soft Artificial Muscle
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
4022
4029
.
13.
Zrinyi
,
M.
, and
Szabo
,
D.
,
2001
, “
Muscular Contraction Mimicked by Magnetic Gels
,”
Int. J. Mod. Phys. B
,
15
(
6–7
), pp.
557
563
.
14.
Nguyen
,
V. Q.
, and
Ramanujan
,
R. V.
,
2010
, “
Novel Coiling Behavior in Magnet-Polymer Composites
,”
Macromol. Chem. Phys.
,
211
(
6
), pp.
618
626
.
15.
Nguyen
,
V. Q.
,
Ahmed
,
A. S.
, and
Ramanujan
,
R. V.
,
2012
, “
Morphing Soft Magnetic Composites
,”
Adv. Mater.
,
24
(
30
), pp.
4041
4054
.
16.
Nguyen
,
C. T.
,
Phung
,
H.
,
Hoang
,
P. T.
,
Nguyen
,
T. D.
,
Jung
,
H.
, and
Choi
,
H. R.
,
2018
, “
Development of an Insect-Inspired Hexapod Robot Actuated by Soft Actuators
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061016
.
17.
Berselli
,
G.
,
Vertechy
,
R.
,
Vassura
,
G.
, and
Castelli
,
V.
,
2009
, “
Design of a Single-Acting Constant-Force Actuator Based on Dielectric Elastomers
,”
ASME J. Mech. Rob.
,
1
(
3
), p.
031007
.
18.
Brochu
,
P.
, and
Pei
,
Q.
,
2010
, “
Advances in Dielectric Elastomers for Actuators and Artificial Muscles
,”
Macromol. Rapid Commun.
,
31
(
1
), pp.
10
36
.
19.
Nespoli
,
A.
,
Besseghini
,
S.
,
Pittaccio
,
S.
,
Villa
,
E.
, and
Viscuso
,
S.
,
2010
, “
The High Potential of Shape Memory Alloys in Developing Miniature Mechanical Devices: A Review on Shape Memory Alloy Mini-Actuators
,”
Sens. Actuators A
,
158
(
1
), pp.
149
160
.
20.
Haines
,
C. S.
,
Lima
,
M. D.
,
Li
,
N.
,
Spinks
,
G. M.
,
Foroughi
,
J.
,
Madden
,
J. D. W.
,
Kim
,
S. H.
,
Fang
,
S.
,
Andrade
,
M. J.
,
Goktepe
,
F.
,
Goktepe
,
O.
,
Mirvakili
,
S. M.
,
Naficy
,
S.
,
Lepro
,
X.
,
Oh
,
J.
,
Kozlov
,
M. E.
,
Kim
,
S. J.
,
Xu
,
X.
,
Swedlove
,
B. J.
,
Wallace
,
G. G.
, and
Baughman
,
R. H.
,
2014
, “
Artificial Muscle From Fishing Line and Sewing Thread
,”
Science
,
343
(
6173
), pp.
868
872
.
21.
Foroughi
,
J.
,
Spinks
,
G. M.
,
Aziz
,
S.
,
Mirabedini
,
A.
,
Jeiranikhameneh
,
A.
,
Wallace
,
G. G.
,
Kozlov
,
M. E.
, and
Baughman
,
R. H.
,
2016
, “
Knitted Carbon-Nanotube-Sheath/Spandex-Core Elastomeric Yarns for Artificial Muscles and Strain Sensing
,”
ACS Nano
,
10
(
10
), pp.
9129
9135
.
22.
Weijde
,
J.
,
Smit
,
B.
,
Fritschi
,
M.
,
Kamp
,
C.
, and
Vallery
,
H.
,
2017
, “
Self-Sensing of Deflection, Force, and Temperature for Joule-Heated Twisted and Coiled Polymer Muscles Via Electrical Impedance
,”
IEEE/ASME Trans. Mechatronics
,
22
(
3
), pp.
1268
1275
.
23.
DYNALLOY
, 2018, “
Makers of Dynamic Alloys
,” Dynalloy, Irvine, CA, accessed Oct. 20, 2018, http://www.dynalloy.com/tech_data_wire.php
24.
Cho
,
K. H.
,
Song
,
M.
,
Jung
,
H.
,
Park
,
J.
,
Moon
,
H.
,
Koo
,
J. C.
,
Nam
,
J.
, and
Choi
,
H. R.
,
2016
, “
A Robotic Finger Driven by Twisted and Coiled Polymer Actuator
,”
Proc. SPIE
,
9798
, pp. 1–7.
25.
Fontera
,
W. R.
, and
Ochala
,
J.
,
2014
, “
Skeletal Muscle: A Brief Review of Structure and Function
,”
Calcif. Tissue Int.
,
96
(
3
), pp.
183
195
.
26.
Harrington
,
W. F.
,
1971
, “
A Mechanochemical Mechanism for Muscle Contraction
,”
Natl. Acad. Sci.
,
68
(
3
), pp.
685
689
.
27.
Jarosch
,
R.
,
2008
, “
Large-Scale Models Reveal the Two-Component Mechanics of Striated Muscle
,”
Int. J. Mol. Sci.
,
9
(
12
), pp.
2658
2723
.
28.
Cho
,
K. H.
,
Song
,
M.
,
Jung
,
H.
,
Yang
,
S. Y.
,
Rodrigue
,
H.
,
Moon
,
H.
,
Koo
,
J. C.
,
Nam
,
J.
, and
Choi
,
H. R.
,
2017
, “
Biomimetic Robotic Joint Mechanism Driven by Soft Linear Actuators
,”
International Conference on Robotics and Automation
(
ICRA
), Singapore, May 29–June 3, pp.
1850
1855
.
29.
DYNALLOY, Inc.
, 2018, “
Makers of Dynamic Alloys
,” Dynalloy, Southern California, CA, accessed Oct. 20, 2018, http://www.dynalloy.com/pdfs/TCF1140.pdf
30.
King
,
A. M.
,
Loiselle
,
D. S.
, and
Kohl
,
P.
,
2004
, “
Force Generation for Locomotion of Vertebrates: Skeletal Muscle Overview
,”
IEEE J. Oceanic Eng.
,
29
(
3
), pp.
684
691
.
31.
Josephson
,
R. K.
,
1993
, “
Contraction Dynamics and Power Output of Skeletal Muscle
,”
Annu. Rev. Physiol.
,
55
(
1
), pp.
527
546
.
32.
Jung
,
H. S.
,
Yang
,
S. Y.
,
Cho
,
K. H.
,
Song
,
M. G.
,
Nguyen
,
C. T.
,
Phung
,
H.
,
Kim
,
U.
,
Moon
,
H.
,
Koo
,
J. C.
,
Nam
,
J.
, and
Choi
,
H. R.
,
2017
, “
Design and Fabrication of Twisted Monolithic Dielectric Elastomer Actuator
,”
Int. J. Control Autom. Syst.
,
15
(
1
), pp.
25
35
.
33.
Jung
,
H. S.
,
Cho
,
K. H.
,
Park
,
J. H.
,
Yang
,
S. Y.
,
Kim
,
Y.
,
Kim
,
K.
,
Nguyen
,
C. T.
,
Phung
,
H.
,
Hoang
,
P. T.
,
Moon
,
H.
,
Koo
,
J. C.
, and
Choi
,
H. R.
,
2018
, “
Muscle-like Joint Mechanism Driven by Dielectric Elastomer Actuator for Robotic Applications
,”
Smart Mater. Struct.
,
27
(
7
), pp.
1
7
.
You do not currently have access to this content.